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Abstract 

When undergraduate students learn the application of differentiation, they are expected to 

comprehend the concept of differentiation first, make connections between particular constructs 

within differentiation and strengthen the coherence of these connections. Undergraduate 

students struggle to comprehend kinematics as a rate of change in their efforts to solve contextual 

problems. This study sought to explore undergraduate students’ construction of connections and 

the underlying structures of these relationships as they learn calculus of motion. The action-

process-object-schema and Triad theories were used to explore undergraduate students’ 

construction of connections in differentiation and the underlying structures of these relationships 

as they learn the calculus of motion. This study was qualitative which involved a case study of 202 

undergraduate mathematics students registered for a Bachelor of Education degree. Data were 

collected through an individual written test by the whole class and semi-structured interviews with 

ten students purposively selected from the class. The interviews were meant to clarify some of the 

responses raised in test. The findings revealed that students’ challenges in differentiating the 

given function were insignificant, but they need help to make connections of differentiation to its 

application to kinematics. Furthermore, students’ coherence of the connection among 

displacement, velocity and acceleration was weak, coupled by their failure to consider the point 

when the object was momentarily at rest (which is central in optimization). The results of this study 

have some implications for instructors. The teaching of calculus and other 456 mathematical 

concepts should connect to the real-life application of those concepts so that 457 students can 

make meaningful interrelationships thereof. Kinematics for differentiation paves way for 

kinematics under the application of integration hence students’ optimal conceptualization is of 

utmost importance. 

Keywords: application of differentiation, APOS, derivatives, kinematics, triad, undergraduate 

students 

 

INTRODUCTION 

In South Africa, secondary school learners are 
introduced to limits and continuity in grade 12, which in 
turn paves way for the introduction to differential 
calculus. In differential calculus, learners are taught 
differentiation from first principles, rules of 
differentiation and practical problems involving 
optimization and rates of change (Department of 
Education, 2011). Learners’ firm understanding of 
calculus concepts is a foundation to further studies in 
advanced mathematics at university (Brijlall & Ndlovu, 
2013). Many studies have been conducted in both 

secondary and undergraduate students’ understanding 
of derivatives in the South African context (Brijlall & 
Ndlovu, 2013; Maharaj, 2013; Siyepu, 2013) and the 
results demonstrated that students could apply 
competently the rules of differentiation to derive any 
given functions. However, studies have also shown that 
students grapple with the real meaning of derivatives, 
which are closely tied to rates of change (Desfitri, 2016; 
Lam, 2009; Tyne, 2016). The use of carefully selected 
contexts can help students in providing purpose, 
relevancy and meaning to differentiation concepts and 
skills (Doorman et al., 2022). The contexts can show the 
relevance of differentiation and support students in 
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building mathematical knowledge on their intuitions. In 
calculus, the contexts relate to the application of 
derivatives to realistic or artificial real-world situations 
(Mkhatshwa, 2023b). The use of contexts involves 
modelling activities where rates of change play an 
important role.  

Optimization involves the process of maximizing or 
minimizing a modelled mathematical objective function 
by taking into consideration input variables and 
constraints (Alshqaq et al., 2022). It is one of the key 
contexts of the application of derivatives, which has 
wide applications in engineering, economics, 
manufacturing and marketing. To enhance students’ 
proficiency in solving optimization problems, rates of 
change serve as a fundamental concept (Retamoso, 
2022). Rates of change are basically derivatives, which 
measures the change of the output variable in respect to 
the change in the input variable. To differentiate is to 
find the gradient function, which represents the slope of 
a function at a particular point in the domain of function.  

Kinematics is an instance of optimization, which is 
the study of one-dimensional motion that uses 
derivatives to interpret instantaneous displacement, 
velocity and acceleration concepts (Hitier et al., 2022). 
Kinematics sits at the intersection of calculus and 
mechanics, as a case of a notion “where the contribution 
of mathematics and physics cannot be separated” 
(Pospiech, 2019, p. 3). In kinematics, contextual problems 
foster the concepts in students’ understanding of real-life 
motion of physical bodies, which in turn provides 
relevance, meaning and purpose to mathematical skills 
and concepts (Doormanet al., 2022). Contextual learning 
support students’ construction of mathematical 
knowledge based on intuition as students develop and 
connect representations in the physics of motion. 
According to literature, students manage the general 
techniques of differentiation but fall short of the 
conceptual underpinnings necessary to explain 
procedures in contextual problems (Brijlall & Ndlovu, 
2013; Mkhatshwa, 2024). More specifically, students 
struggle to comprehend kinematics as a rate of change 
(Talib et al., 2023). This study focusses on the use of 
derivatives to solve one-dimensional kinematics 
problems. Thus, this study sought to explore 
undergraduate students’ development of the 
connections of derivatives to motion in one direction and 
the coherence of these connections. This leads to the 

research question: “What are undergraduate students’ 
understanding of the application of derivatives to 
motion in one direction?” The motivation of this study 
was that undergraduate students’ competence in solving 
optimization problems of objective functions is 
problematic (Mkhatshwa, 2023a). Kinematics in 
differentiation relies on optimization of the 
displacement function. This study’s significance is that 
the results builds up on the teacher professional 
knowledge and provides valuable data for further 
research on exploring how optimization problems can be 
sassed (Matindike & Makonye, 2023).  

LITERATURE REVIEW AND THEORY 

Understanding Derivatives 

To show understanding of derivatives, students 
should understand the rules of differentiation for 
specified functions, as well as scale word problems on 
the application of differentiation. The learning of 
techniques of differentiation has been sufficiently 
investigated and with the conclusion that students 
generally do not find performing procedures 
problematic. A study by Siyepu (2013) explored 
undergraduate students’ errors as they learn derivative 
of functions in a chemical engineering course. After 
using the action-process-object-schema (APOS) theory to 
classify and interpret undergraduate students’ errors, 
Siyepu (2013) discovered that students’ greatest error 
was over-generalization of rules and properties of the 
power rule. Otherwise, students did not have specific 
challenges with differentiation techniques. It is the 
application of derivatives in contextual problems that 
requires students to exert more cognitive load.  

Fatmanissa et al. (2019) note that contextual problems 
are considered difficult as they require the skill to make 
sense of the problem and transform them to 
mathematical representation, in addition to 
understanding the derivative aspect. Transforming 
context problems into mathematical symbols is not an 
easy feat for most students; oftentimes, students prefer 
to find numerical solutions almost directly from the 
numbers given at face value. Students jump into 
calculations without careful understanding of what is 
given in the problem, at the expense of deriving required 
functions (Wijaya et al., 2014). In the study by 
Fatmanissa et al. (2019), this problem was posed to 

Contribution to the literature 

• This study sought to explore undergraduate students’ construction of connections and the underlying 
structures of these connections as they learn calculus of motion.  

• The findings revealed that students’ challenges in differentiating the given function were insignificant, 
but they need more help to make connections of differentiation to its application to kinematics. 

• The results build up on the teacher professional knowledge and provides valuable data for further 
research on exploring how optimization problems can be solved. 
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students: “A bullet is shot upward vertically. The relation 
between its height (ℎ) in meter and time (𝑡) in seconds with 
0 ≤ 𝑡 ≤ 60 is defined by ℎ(𝑡) = 300𝑡 − 5𝑡2. Explain the 
bullet’s height 5 seconds before, exactly at, and 5 seconds after 
its maximum height.” A sample of 69 grade 11 students 
attempted the aforementioned problem but struggled to 
explain the trajectory of the bullet; rather they went 
ahead and substituted 𝑡 = −5, 𝑡 = 0 and 𝑡 = +5 into the 
function as an attempt to solve the problem. There was a 
conceited focus on symbols than the phrase “its 
maximum height”. Students are prone to difficulties in 
translating contextual problems into mathematics 
functions and subsequently decide on which function to 
use. 

The study by Klymchuk et al. (2010) also posed a 
problem where university students were lost in 
translation. Students were given this problem to solve a 
trucking cost problem: “The cost of running a heavy truck 

at a constant velocity of 𝑣 km/h is estimated to be 4 +
𝑣2

200
 

dollars per hour. Show that to minimize the total cost of a 
journey of 100 km in the truck at constant velocity, the truck 
should run approximately 28 km/h.” Only ten out of 197 
students managed to derive the total cost function that 
was supposed to be minimized. Without the total cost 
function, all the 187 students could not meaningfully 
proceed to solve the problem. However, the same 
students performed well in evaluating explicit 
derivatives that required only mathematical 
manipulations and techniques. In some cases, students 
would try to simplify the question by making random 
substitutions of the numerical values given in the 
question but without understanding. In another study, 
Ellis and Turner (2002) used the graphical approach to 
develop students’ conceptual understanding of 
kinematics. Students were in a good position to 
understand motion in a practical and learner-centered 
environment. On the other hand, Mkhatshwa (2023a) 
focused on the opportunities provided by some 
American textbooks for students to learn optimization. 
His findings revealed that there exists a relationship 
between opportunities to learn optimization provided 
by textbooks of calculus and the known students’ 
difficulties when solving optimization problems.  

The APOS Theory 

Dubinsky (1991) proposed a type of research to 
determine the extent to which theories of learning and 
teaching mathematics can help mathematics educators 
to understand the learning process. Theories provide 
explanations of phenomena that can be observed in 
students who attempt to construct understanding of 
mathematical concepts. The knowledge gained from 
such research is useful for mathematics educators to 
suggest directions for future pedagogy that can be of 
value in the learning process of mathematical concepts. 
The theory by Dubinsky (1991) later came to be known 

as the APOS. With this type of research, there is no strict 
separation between an instructor and a researcher; they 
both share a common goal and participate in activities 
that would facilitate learning mathematics (Oktaç et al., 
2019). Other theories were also used in some studies in 
mathematics education, like the three worlds (Tall, 2004) 
and the triad by Piaget and Garcia (1989). A mix of two 
theories in a single study was observed in some studies, 
for example, the APOS and triad were used by Dubinsky 
and McDonald (2001) and APOS and three worlds were 
used by Bilondi and Radmehr (2023).  

The development of the level mathematics 
understanding of the students culminates in the schema 
for that mathematical concept. The APOS theory 
advocates that students learn a mathematical concept 
through a hierarchical development of action, process 
and object mental structures by organizing them in a 
schema. The APOS theory is explained in detail in the 
works by Arnon et al. (2014) and Asiala et al. (1996). 
According to the APOS Theory, a mathematical concept 
is first understood at the action level, which represents a 
set of explicit step-by-step instructions construction of 
knowledge. Evaluating derivatives of given functions 
following a specific technique is evidence of an 
individual at the action-level conception of differential 
calculus. When an action is repeated and reflected upon, 
an individual can make internal mental constructions 
called processes. An individual at the process level can 
perform the same actions but based on internal stimuli, 
whereby he or she can predict, work in reverse and work 
mentally. An individual attains the process conception 
of differentiation when he or she can reflect on their 
actions to determine the appropriate technique of 
differentiation of a given function and then differentiate 
the function either physically or mentally.  

An object conception occurs when an individual 
perceives a process as a totality and he or she can 
perform actions and processes to this totality. The 
application of differentiation is situated in this 
knowledge domain whereby an individual identifies an 
object implicitly or explicitly and then computes the 
critical values when the event is optimized. In this study, 
an individual student should be able to evaluate the time 
when the particle is momentarily at rest and the 
respective distance, speed and acceleration when such 
occurs. Finally, a schema of a mathematical concept is a 
collection of many actions, processes and objects and 
other previously held schemas that need to be organized 
coherently so that an individual can decide the 
appropriate mental constructions required to be applied 
in order to deal with a given problem situation. This 
coherent framework provides a means to determine 
which phenomena are in the scope of the schema and 
those that are not. The application of differentiation has 
many contexts and students with a full schema 
development should be in a position delineate and solve 
appropriately.  
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The references to differentiation based on each of the 
four mental structures stated above constitute the 
genetic decomposition (GD), which forms part of the 
theoretical analysis of the mathematical concept. A GD 
is a description of testable predictions that constitutes a 
description of the actions, processes and objects of 
mathematical concept. If the postulates are constructed 
in a certain way by a generic student, then this student 
will be successful in using the mathematical concept to 
solve problems involving the concept (Dubinsky & 
McDonald, 2001). The researcher drafts the GD based on 
his knowledge of research and understanding of the 
mathematical concept. After using the theory to analyze 
and explain how fitting the data is to the theory, 
revisions to the GD and the enhancement of the theory 
may become necessary. The revised GD may result in 
another cycle of theoretical analysis and implementation 
of instruction, however, an enhancement of the APOS 
theory may lead to a better understanding of the 
construction of knowledge in that concept. The 
enhancement of APOS was done by incorporating the 
triad theory by Piaget and Garcia (1989), which led to a 
profound and deeper understanding of the development 
of schemas and provide better explanation of students’ 
construction of knowledge. To determine the possible 
mathematical understanding of students in this study, a 
mix of the Dubinsky’s (1994) APOS and Piaget and 
Garcia’s (1989) triad frameworks was used.  

The triad theory focusses on mental constructions 
that goes on in the mind of students when they learn a 
mathematical concept. According to the triad theory, 
before a schema becomes coherent, it must go through 
the intra-stage, inter-stage and trans-stage. The intra-
stage is the preliminary level of conceptualization 
whereby a concept is thought of in an isolated manner in 
terms of its properties. An individual’s actions, 
processes and objects are in isolation from other mental 
structures of a similar nature (Borji & Martínez-Planell, 
2020). At this lowest stage of schema development, 
students would have an isolated collection of rules for 
differentiating specific functions. Once relationships and 
transformations are established between objects and 
other previously held schema, the individual is at the 
inter-stage. The schema development enters the inter-
stage when students make connections between the 
nature of differentiation and its relationship to the 
science of motion. In the trans-stage, students begin to 
form coherent structures that underlie the relationships 
developed in the inter-stage. There now exists a robust 
connection between differentiation and its application to 
the science of motion. Being able to take appropriate 
decisions to solve optimization problems depicts the 
development of the trans-stage. When students’ mental 
constructions develop to the trans-stage, it can properly 
be referred to as a schema. The APOS theory’s 
description of schema coincides with the trans-stage of 
triad since that is where coherent structures emerge. The 

isolated (intra-) and connected (inter-) objects constitute 
a pre-schema. This represents the full schema 
development of application of differentiation to motion 
in one direction, as advocated by Skemp (1962), who 
defined schema as an organized body of knowledge that 
can be used to bear upon problem situations.  

METHODOLOGY 

By conducting a qualitative methodology study 
following the case study approach, the researchers 
explored first-year Bachelor of Education mathematics-
major students’ understanding of the application of 
differentiation to motion in one direction. According to 
Yin (2009), a case study approach is an in-depth 
investigation of a single and well-defined contemporary 
phenomenon within its context. Data were collected 
through 202 students’ written responses to a formal test 
administered on kinematics. The sole item for 
consideration in this study was given as, “The motion of a 
particle from the origin O is described by the equation 𝑠(𝑡) =
2

3
𝑡3 −

17

2
𝑡2 + 21𝑡, where 𝑠 is the distance in meters and 𝑡 is 

the time in seconds. Find the acceleration of the particle when 
it is momentarily at rest, given that the time taken is at least 5 
seconds.” The test was written after the teaching the topic 
of application of differentiation using traditional 
instruction. A preliminary analysis of data categorized 
students’ responses into blank, incorrect, partially and 
correct and the frequencies thereof were evaluated. 
Furthermore, a content analysis of the written responses 
was done to reveal the stages of students’ concept 
development of kinematics in accordance with the APOS 
and the triad theories. The students’ written responses 
were assigned terms K1, K2 and so on until K202 for ease 
of reference and confidentiality. 

FINDINGS  

Preliminary Analysis 

The preliminary analysis of data for the 202 written 
responses revealed the frequencies shown in Table 1. 
The next sub-section elaborates on the content analysis 
to report the nature of the students’ understanding in 
each category. Interview transcriptions are also included 
as a follow-up the students’ written responses.  

From Table 1, nine students left the question un-
answered. Of these, five only copied the question only 
(see Figure 1) and four skipped the question entirely.  

Table 1. The frequencies of students’ written responses 
according to the preliminary analysis 

Response type Frequency 

Blank 9 
Incorrect 32 
Partially-correct 159 
Correct 2 
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These nine students did not attain the intra-stage by 
not attempting, as they failed to recognize the question 
as the application of differentiation to the science of 
motion.  

Incorrect Responses Category 

The main challenge for the students in the category of 
wrong answers was the inability to differentiate the 
given displacement function. Students lacked the action 
conception to compute the derivative, 𝑠′(𝑡). Rather, 
students like K175 at once evaluated 𝑠(5) to get distance 

and then used the unfounded formula 
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑡𝑖𝑚𝑒
 to find 

acceleration (shown in Figure 2).  

If would have been better if he had used the correct 

formula 
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑡𝑖𝑚𝑒
, but still how he was going to evaluate 

acceleration when the particle was at rest. 

Of the 32 who got this question wrong, 17 did not 
differentiate the function at all in order to get the velocity 
function 𝑠’(𝑡). When asked to explain, K135 said, “There 
is no mentioning of differentiation in the question.” 
Unbeknown to K135, it is the velocity function that is 
used to get the time when the displacement is optimized. 
A further 13 did some attempts to differentiate but failed 
to get 𝑠′(𝑡) and/or 𝑠′′(𝑡). K137 failed to get the first 
derivative as shown in Figure 3, which spoiled his 
chances of getting the expected values of time when the 
particle was stationary. The second derivative was not 
evaluated either in some cases.  

In another instance, K137 changed the polynomial to 
3

2
𝑡2 −

17

2
𝑡 + 21 instead of the original function 

2

3
𝑡3 −

17

2
𝑡2 + 21𝑡. The remaining two students also changed the 

value of the function by dividing throughout by 𝑡 and 
then differentiated the simplified function as shown in 
Figure 4. The student’s intention to divide by 𝑡 was 
unfounded. 

Upon further inquiry in the interview, K104 had no 
specific reason to justify division by 𝑡 as in the dialogue 
below.  

Researcher: Have you ever done this way when 
differentiating polynomials? 

K104: I do not remember. What I know is that we 
divide distance by time to get velocity. 

 
Figure 1. Writing down the question only by K93 (Source: 
Authors’ own illustration) 

 
Figure 2. Failure to find the derivative of the polynomial 
𝑠(𝑡) by K175 (Source: Authors’ own illustration) 

 
Figure 3. Incorrect first derivative by K137 (Source: 
Authors’ own illustration) 

 
Figure 4. Inappropriate division by a variable 𝑡 by K36 
(Source: Authors’ own illustration) 
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Researcher: Is that the reason you divided by t? 

K104: Yes.  

Researcher: Ok. However, I see you still 
differentiated the quotient to get 𝑠’(𝑡). 

K104: That was my understanding when I wrote 

that. However, I see my mistake now. 

Sometimes students think if the rate of change is 
time-based, then division by time (𝑡) is justified. 
Nevertheless, students who could not differentiate the 
given polynomial were insignificant relative to those 
who did differentiate correctly.  

Having failed to get the correct derivative, the 32 
could not make the required action conception of 
derivatives, and subsequently their connections of the 
application of differentiation to kinematics was weak. 
Students who majored in physics encounter kinematics 
under mechanics, where they also use equations of 
motions to evaluate unknown quantities like 
acceleration or velocity. Thus, two students tried to use 
equations of motions to evaluate acceleration, but it was 
out of context in optimization. Figure 5 illustrates K97’s 
attempt. Optimization uses instantaneous rates of 
change, where differentiation is key. 

In the interview, K188 concurred that they covered 
kinematics in mechanics by using equations of motion. 
He confessed ignorance that equations of motion were 
inappropriate in this circumstance, insisting that was the 
only way to find the answer. 

Partially Correct Responses Category 

The highest frequency in the preliminary analysis 
was that of students who had partially correct responses. 

Of these, 55 students managed to establish the 
connection between derivatives and the three terms of 
kinematics, which are displacement, velocity and 
acceleration. However, they did not engage the idea of 
the particle being momentarily at rest to compute the 
critical time when such happens. This is illustrated in 
Figure 6, where K15 differentiated twice to get velocity 
and acceleration, respectively. However, he did not 
compute the critical times, so he had to put up with 𝑠′′(5) 
to find acceleration. 

All the 55 students used the cut-off point of 5 minutes 
as the critical time to evaluate acceleration. To K145 he 
thought that 𝑡 = 5 is the time when the particle was at 
rest, hence he got acceleration of 3 𝑚𝑠−2.  

Researcher: Did you use the concept of 
optimization to find time 𝑡. 

K145: No Sir. It was given as five, wasn’t it? 

Researcher: What is your understanding of the 

term “at rest”? 

K145: Oh, I was supposed to solve 𝑠’(𝑡) = 0 first. 

In a similar manner, 57 students differentiated only 
once and calculated 𝑠’(5) to get −14 𝑚/𝑠 (shown in 
Figure 7).  

 
Figure 5. Use of equations of motions instead of derivatives 
by K97 (Source: Authors’ own illustration) 

 
Figure 6. Correct differentiation but without sound 
connection to kinematics by K15 (Source: Authors’ own 
illustration) 

 
Figure 7. Correct first derivative but incorrect method for 
acceleration by K103 (Source: Authors’ own illustration) 
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Based on this velocity, they went ahead to evaluate 

acceleration as 
−14

5
 𝑚/𝑠2. They conceived acceleration as 

average velocity divided by time, not as a rate of change 
requiring the use of the second derivative. Inadvertently, 
K103 cancelled the correct approach 𝑠’(𝑡) = 0. When 
asked why he cancelled a supposedly correct procedure, 
K103 said it was not necessary since 𝑡 = 5 was given. 

A further 29 students made significant strides to get 
the solutions for 𝑠’(𝑡) = 0 but did discard the 

solutions 𝑡 =
3

2
 so as to evaluate 𝑠’’(7). Rather, there was 

a myriad of substitutions, like 𝑠 (
3

2
) , 𝑠”(3), 𝑠(5), 𝑠(7) and 

𝑠’’ (
3

2
). In Figure 8, K54 managed to solve the equation 

𝑠’(𝑡) = 0 and discarded the unwanted time but then 
plugged 𝑡 = 7 into the function 𝑠(𝑡).  

Again the second derivative was not evaluated, 
hence, acceleration was computed using 𝑠’(𝑡). However, 

K54 used 𝑎 =
𝑠

𝑡
, rather than 

𝑣

𝑡
. Their connection between 

instantaneous differentiation and the motion in one 
direction was muddled. After evaluating the first 
derivative, five students attempted but failed to solve 
𝑠’(𝑡) = 0. Solving the quadratic equation that has factors 
is supposed to be easy for undergraduate students; 
however, K12 tried to use completing the square but 
aborted the process as became lengthy. K103 also tried 
to use the quadratic formula to solve the equation 𝑠’(𝑡) =

0 but later cancelled all the steps he had done. Four more 
students (K161, K201, K12, and K48) attempted to 
solve 𝑠’(𝑡) = 0 but did not find the roots. Upon further 
inquiry in the interview, the students did not understand 
why they had to solve 𝑠’(𝑡) = 0, hence were not keen to 
find the roots. 

Exactly nine students missed the connection of 
derivatives to stationary values as evidenced by using 
𝑠’’(𝑡) = 0, instead of 𝑠’(𝑡) = 0. According to students like 
K20 (see Figure 9), optimization is tantamount to 𝑠’’(𝑡) =

0. K20 was quite convinced that the particle was 
momentarily at rest when 𝑠’’(𝑡) = 0 from his response. 

When K20 was probed, he still maintained his 
explanation in Figure 9, oblivious to the fact that when a 
particle is momentarily at rest, the gradient is zero. This 
translates to 𝑠’(𝑡) = 0 in symbols. Solving the second 
derivative equation gives rise to 𝑡=174, as shown in 

Figure 9. To find acceleration, K20 substituted 𝑡 =
17

4
 into 

the function 𝑠′′(𝑡) that obviously yielded zero. Three 
students also performed both derivatives perfectly but 
then ended the solution without calculating the 
stationary values. Figure 10 portrays K53’s solution that 
was not complete. 

Correct Responses Category 

From Table 1, only two students (K18 and K92) 
managed to establish the coherence of the relationship of 
acceleration when the particle was momentarily at rest. 
This entailed evaluating the second derivative and 
plugging in the expected critical time when the particle 
was momentarily at rest. The correct solution of the 
question is shown in Figure 11.  

The dialogue with K92 is shown below: 

 
Figure 8. Correct critical times but without second 
derivative by K54 (Source: Authors’ own illustration) 

 
Figure 9. Using the second derivative to find stationary 
values by K20 (Source: Authors’ own illustration) 

 
Figure 10. Perfect derivatives but incomplete solution by 
K53 (Source: Authors’ own illustration) 
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Researcher: Explain how you got the acceleration 
of 11 m/s/s. 

K92: The gradient is zero when the particle is 
momentarily at rest thus I solved the equation 
𝑠’(𝑡) = 0. 

Researcher: What happened to the root 3/2? 

K92: It is outside the solution set. 

Researcher: Why did you differentiate again? 

K92: Because acceleration is the second derivative 
in kinematics. Plugging in the critical time gives 
me acceleration when the particle is at rest. 

The goal of instruction is to get the majority of 
students to at least develop the mental structures to 
evaluate critical values and subsequently differentiate 
once and twice for velocity and acceleration, 
respectively. 

DISCUSSION 

Evaluating Derivatives 

In any given differentiation situation, some students 
opt to skip some questions. Researchers cannot tell 
whether the students could at least perform the 
appropriate techniques to find derivatives. This non-
attempt represents a pre-schema according to Kazunga 
and Bansilal (2020). The findings in this study also 
revealed that students do not have particular problems 
in understanding and executing derivatives. The basics 
of calculus commence in the final year of high school in 

most countries, hence differentiation is a progression to 
first-year undergraduate calculus. Thus, high school 
teachers still have an enormous role to play to instill 
basic understanding of calculus concepts (Estonanto & 
Dio, 2019; Klymchuk et al., 2010). As is expected at the 
intra-stage, the students’ understanding of derivatives 
was adequate, but it was isolated and rule-bound. 
Calculation of derivatives is oftentimes straightforward 
for most students, but applying differentiation is 
difficult when solving rates of change (Mkhatshwa, 
2023a). Mkhatshwa (2023b) notes that the lack of rules of 
differentiation serves as a stumbling block for students 
when solving rates of change problems. Literature also 
reports on some perceived students’ difficulties in 
evaluating derivatives (Brijlall & Ndlovu, 2013; Kertil & 
Dede, 2022; Tyne, 2016) but these are insignificant, as 
confirmed in this study. In this study, the given 
polynomial 𝑠(𝑡) was easily differentiated by the majority 
of students. Many students did not evaluate the first and 
second derivatives mainly because they did not realize 
that it was required to do so. The command to 
differentiate was implied, hence students like K135 did 
not differentiate because it was not explicitly stated.  

Application of Differentiation 

Students’ weak connections in the application of 
differentiation are rife. Oftentimes “failure to express 
meaningful ideas on the optimization concept’s role in 
calculus may to a large extent be due to inappropriate 
and weak mental links between knowledge of other 
calculus concepts such as derivatives” (Bezuidenhout, 
2001, p. 23). Consequently, the findings in this study 
revealed that 32 students in the sample did not attribute 
the question to kinematics despite some conceited efforts 
to differentiate the given function. Klymchuk et al. (2010) 
comment that students are weak in establishing links 
between mathematics content and the real world, which 
in this study, are links between differentiation and its 
application in kinematics. Even though the term velocity 
was missing entirely in the item for the test, some key 
terms like distance and acceleration were present as cues 
to the question’s connection to the motion in one 
dimension. The coherence of connections in a schema is 
determined by its use in deciding its scope in solving 
problems (García et al., 2011).  

Equations of Motion 

Some students in the sample were majoring in 
mathematics and physics. Since kinematics lies at the 
intersection of mechanics and calculus, some students 
resorted equations of motion to find acceleration. 
Instead of understanding the application of 
differentiation in totality, they resorted to the equations 
of motion as taught in mechanics. Motion in one 
direction is the same in both but what the students failed 
to realize is that calculus uses functions to describe 
motion, as opposed to mechanics which uses specific 

 
Figure 11. Perfectly correct solution by K18 (Source: 
Authors’ own illustration) 
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values that can be substituted into the set of equations of 
motion (Hitier & González‑Martín, 2022). Moreover, 
kinematics in calculus considers instantaneous rates of 
change that leads to some values to be optimized, whilst 
the equations of motion rely on average rates of change 
that do not use derivatives. Such disconnections 
demotivates students, often leading to high failure rates 
amongst calculus students. The schema for the 
application of differentiation was under-developed in 
this case, which coincided with lack of inter-stage 
conception. 

The Coherence of Relationships 

Indeed students demonstrated the actions and 
processes in evaluating derivatives and linking them to 
kinematics. However, the trans-stage was not attained, 
which calls for establishing coherences in the connection 
they would have constructed in the science of motion. 
Students who attempted to solve 𝑠’’(𝑡) = 0, was 
evidence that they did not understand that in rates of 
change, it is the first derivative that is considered (Longe 
& Maharaj, 2023). To those who managed to solve 𝑠’(𝑡) =

0, very few regarded the restriction that time should be 
greater than five minutes. Students in this category 
managed to establish the application to differentiation 
but did not get as far as the conclusion of the question 
(Fatmanissa et al., 2019). The articulation of acceleration 
when the particle was at rest require object-level 
conception of application of differentiation. The 
connection between the actions, processes and objects 
was partly achieved. Thus, it is difficult for students to 
develop object conception under the trans-stage of 
schema development. Bilondi and Radmehr (2023) also 
discovered that it is difficult to develop the object 
conception under the formal world. The formal world is 
the highest level under Tall’s (2004) theory of three 
worlds and the most difficult to develop. The successful 
structural organization of actions, processes and objects 
is what Dubinsky (1991) defined as the schema. In this 
study, findings revealed that only two students attained 
the full schema development of the kinematics.  

Students’ challenges in establishing robust 
relationships to optimization tasks are to handle the 
problem assumptions and restrictions. The task in this 
study required acceleration when the particle was 
momentarily at rest, but the time was not given. Students 
had to implicitly compute critical times and then 
consider only time that is at least 5 minutes. In 
attempting to solve contextual problems, some students 
tend to pick numbers in a context and plug them into 
formulae. Fatmanissa et al. (2019) reveal that students 
pay more attention to numerals than to the phrase 
“momentarily at rest”. The findings revealed that 
students regarded the phrase at least 5 minutes as 
denoting that time is given and it is five. Students are 
quick to jump to computing numerical solutions directly 
from the information they see without carefully 

constructing algebraic expressions from what they read 
in the problem (Wijaya et al., 2014). Furthermore, Hitier 
and González‑Martín (2022) confirm students plug 
quantities into equations and churn out numerical 
solutions without due understanding of their 
calculations. Hashemi et al. (2015, p. 227) sum up by 
saying that “difficulties in learning derivatives and 
integrals among undergraduate students are due to their 
weakness in solving problems involving these 
concepts”. 

CONCLUSION 

It was not easy for students to attain the trans-stage, 
which entails that the full schema development in 
kinematics as an application of differentiation was 
hardly achieved. Results in this study should be an alert 
to possible lack of schema development in 
undergraduate students’ conceptualization of the 
application of differentiation. The teaching of calculus 
and other mathematical concepts should connect to the 
real-life application of those concepts so that students 
can make meaningful interrelationships thereof. 
Learning of a mathematical concept is complete only if 
students can apply what they would have learnt to real-
life experiences and draw a strong coherence of 
understanding the concept and its application (where 
possible). Maharaj (2013) posited that growth in 
understanding derivatives hinges on establishing 
connections and the underlying relationships to the 
connections, between the mathematical representation 
and the physical application. In this study, students had 
no serious challenges with differentiation of 
polynomials, but they had formidable challenges to 
connect it to its application in kinematics. This was 
caused by over-reliance on isolated facts and procedures 
in the process of learning kinematics. This study argues 
that connections within–and interactions with–and 
coherent to other (similar) concepts are fundamental to 
meaningful learning. The implication to instruction is 
that growth in understanding contextual problems in 
derivatives depends on establishing coherent 
connections between a mathematical representation and 
a real-life application.  
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