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Abstract 

In this study, we compare students’ understanding of the derivative as slope and the antiderivative 

as the area under the curve using isomorphic graph-based problems in both calculus and 

kinematics contexts. Drawing from previous research, we designed two isomorphic tests, each 

with 12 items, and administered them to 543 university students. Our findings show that students 

performed significantly better on the kinematics test, with a higher rate of correct answers in some 

items. We also identified the most frequent errors and general trends in students’ selection of 

incorrect answers across both contexts. Based on these results, we provide specific 

recommendations for improving the instruction of these concepts. The analyses, 

recommendations, and tests included in the study can serve as valuable resources for 

mathematics and science education researchers and instructors teaching these topics. This study 

offers insights into how context influences students’ conceptual understanding, with implications 

for enhancing calculus and physics education. 

Keywords: students’ graph understanding, concept of the derivative, concept of the 

antiderivative, educational innovation, STEM education 

 

INTRODUCTION 

In university-level introductory physics and 
mathematics courses, a key objective is for students to 
develop a strong understanding of graphs. In a 
mechanics course, this typically involves interpreting 
graphs related to kinematics, such as position, velocity, 
and acceleration. In contrast, a traditional calculus 
course in one dimension emphasizes understanding the 
essential features of a function’s graph, particularly its 
first and second derivatives. Two fundamental concepts 
for grasping these graphical representations are the 
derivative as the slope of a curve and the antiderivative 
as the area under a curve. This article explores and 
compares students’ comprehension of these concepts 
across the contexts of calculus and kinematics. 

Numerous studies have examined students’ 
understanding of slope and area under the curve in 
physics contexts (Beichner, 1994; Meltzer, 2004; Nguyen 
& Rebello, 2011; Woolnough, 2000). Similarly, other 

researchers have investigated this understanding within 
mathematical contexts (Christensen & Thompson, 2012; 
Hadjidemetriou & Williams, 2002; Leinhardt et al., 1990). 
Additionally, some studies have focused on comparing 
students’ comprehension of these concepts across both 
physics and mathematics contexts (Carli et al., 2020; 
Ivanjek et al., 2016; Planinic et al., 2012, 2013; Susac et al., 
2018).  

We identified a gap in the literature for a 
comprehensive study comparing students’ 
understanding of the relationships between variables 
across physics and mathematics contexts. Specifically, a 
study that evaluates all possible relationships between 
these variables and does so in an isomorphic manner, 
meaning the same types of questions are asked in both 
contexts. This research addresses that need. This 
comparison makes a detailed analysis of students’ 
conceptual understanding possible. The significance of 
this study lies in its potential impact: the analyses, 
recommendations, and tests provided in Appendix A 
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can serve as valuable resources for both mathematics 
and science education researchers, as well as instructors 
teaching these concepts.  

In a previous paper (Zavala et al., 2017), we presented 
a modified version of the “test of understanding of 
graphs in kinematics (TUG-K)” designed by Beichner 
(1994). On the other hand, in another previous paper in 
this journal (Dominguez et al., 2017) we presented an 
isomorphic version of the TUG-K in the context of 
calculus (“test of understanding of graphs in calculus 
(TUG-C).” In those papers, we proved that both 
instruments are reliable tests with satisfactory 
discriminatory power. Using those tests, we designed 
two shorter versions of 12 items each that are used in the 
present investigation:  

(1) a test with the context of calculus (referred to as 
“TUG-C short version”) and  

(2) a test with the context of kinematics (referred as 
“TUG-K short version”).  

These tests evaluate the derivative and antiderivative 
concepts from the relationship between a function’s 
derivative and its second derivative.  

The primary research question guiding this study is: 
“How do calculus and kinematics contexts influence 
engineering students’ understanding of graphs, 
specifically the derivative as slope and the antiderivative 
as the area under the curve?” To address this question, 
we established three specific objectives:  

(1) To analyze students’ overall scores on both tests 
and assess the impact of context on these scores.  

(2) To examine students’ performance in each 
dimension of the two tests and evaluate the effect 
of context on this performance.  

(3) To analyze students’ performance on individual 
test items and determine how context influences 
their understanding.  

It is worth noting that a preliminary analysis of this 
issue was presented in a brief article (Perez-Goytia et al., 
2010), but the detailed analysis provided here expands 
significantly on that earlier work. 

PREVIOUS RESEARCH 

Studies That Analyze Students’ Understanding of 
Slope and Area Under the Curve Concepts 

Several studies investigate students’ understanding 
of slope concepts in the context of kinematics (Beichner, 
1994; Kusairi et al., 2020; McDermott et al., 1987; Planinic 
et al., 2012). Moreover, several studies investigate this 
understanding in the context of mathematics 
(Christensen & Thompson, 2012; Hadjidemetriou & 
Williams, 2002; Leinhardt et al., 1990; Planinic et al., 
2012). Leinhardt et al. (1990) were the first to categorize 
students’ difficulties into three groups:  

(1) students tend to focus on a single point rather than 
an interval (“interval/ point confusion”),  

(2) students tend to confuse the slope with the height 
of the graph (“slope/height confusion”), and  

(3) students tend to consider the graph as a 
photograph of the situation (“iconic confusion”).  

Moreover, several studies analyze students’ 
understanding of the area under the curve concept in the 
context of kinematics (Beichner, 1994; McDermott et al., 
1987; Planinic et al., 2012). Also, several studies analyze 
this understanding in the context of mathematics 
(Bajracharya et al., 2012; Ballesteros et al., 2020; 
Martínez-Miraval & García-Cuéllar, 2020; Orton, 1983). 
Beichner (1994) categorized students’ difficulties into 
three groups:  

(1) not recognizing the meaning of area under the 
kinematics graph,  

(2) calculating the slope rather than the area, and  

(3) reading the value directly from the vertical axis. 

Contribution to the literature 

• There is in the literature some studies comparing students’ understanding of graphs in the contexts of 
mathematics and kinematics, focusing on students’ understanding of the derivative concept as slope and 
the antiderivative concept as the area under the curve. However, we detected a need for a study that 
would conduct this comparison in a complete manner, that is, evaluating the understanding of all possible 
relationships between variables, and also in an isomorphic manner, that is asking about these variables in 
the same way in both contexts. This study covers this need. This comparison allows for a more detailed 
analysis of students’ understanding. 

• This study demonstrates that the context in which graph-related concepts of derivatives and 
antiderivatives are taught significantly impacts students’ understanding and performance. That is 
students performed better in kinematics contexts than in the calculus context. The tangible nature of 
physical examples compared to the abstract nature of mathematical problems help students grasping the 
concepts better. This underscores the importance of context in educational settings and suggests that 
incorporating more real-world examples in calculus instruction could enhance understanding 

• This study provides analyses, recommendations, and tests that can be valuable resources for mathematics 
and science education researchers, as well as for instructors teaching these concepts. 
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Studies That Compare Students’ Understanding in 
the Contexts of Physics and Mathematics 

These studies are the most related to this article. 
Three articles compare this type (Carli et al., 2020; 
Ivanjek et al., 2016; Planinic et al., 2013). Here, we 
synthesize the most important findings presented in 
these articles. 

The first two studies (Ivanjek et al., 2016; Planinic et 
al., 2013) were conducted by the same research group, 
with the second study building upon the first. In their 
initial study, Planinic et al. (2013) compared students’ 
understanding of slope and area under the curve across 
three contexts: mathematics, kinematics, and a mixed 
context (including various scenarios such as price 
changes over time and population growth). The 
researchers used isomorphic multiple-choice and open-
ended questions to assess students’ understanding. 
Their findings showed that students found the 
mathematics context the easiest, while the other two 
contexts posed similar difficulty levels. For the concept 
of slope, student performance was relatively consistent 
across all three contexts. However, when it came to 
understanding the area under the curve, students 
performed better in the mathematics context, with 
comparable performance in the other two contexts. 

Ivanjek et al. (2016) describe students’ main strategies 
and difficulties identified through analyzing 
explanations and procedures in the second article. The 
authors establish the following main findings:  

(1) the strategies used on parallel questions are often 
context-dependent and domain-specific,  

(2) the preferred strategy on physics questions seems 
to be the use of formulas (often incorrect ones), 
and  

(3) students show similar difficulties with graph 
interpretation in all domains. 

In the third article, Carli et al. (2020) designed a 
multiple-choice test to compare students’ ability to 
answer questions on derivatives, integrals, and vectors 
in two contexts: mathematics and physics. The 
researchers administered the test to university students 
finishing a calculus course in the first semester and 
starting physics in the second semester. Some of the 
main findings of the researchers are the following:  

(1) the mean score was higher in the mathematics 
questions,  

(2) students’ attention was directed towards different 
distractors in a context-specific manner, and  

(3) using formulas to calculate quantities in 
kinematics may limit students’ problem-solving 
abilities. 

At the end of this section, it is important to highlight 
the main differences between previous studies and our 
own. Two key distinctions exist between the studies by 
Planinic et al. (2013) and Ivanjek et al. (2016) and our 

research. The first difference lies in how questions were 
framed in the mathematics context. In the previous 
studies, students were asked directly to find the “slope” 
at a point or the “area” under a curve over an interval 
using a y vs x graph. In contrast, our study, in the context 
of calculus, asked students to find the derivative at a 
point or the change in the antiderivative over an interval. 
The second difference relates to the relationships 
evaluated in each context. In previous studies, the 
researchers assessed one relationship in the mathematics 
context and two relationships for each concept in the 
kinematics context. For the concept of “slope,” they 
asked about “speed” (from the x vs. t graph) and 
“acceleration” (from the v vs. t graph). For the concept of 
“area,” they asked about “distance traveled” (from the v 
vs. t graph) and “change in speed” (from the a vs. t graph). 
To build upon, our study evaluated both relationships 
across both contexts. 

The third study has three key differences (Carli et al., 
2020) and our research. The first difference relates to 
how questions about the antiderivative were framed. In 
their calculus test, students were asked to find the 
“definite integral,” and in the kinematics test, they were 
asked to find the “displacement.” In contrast, in our 
study, the calculus test asked students to determine the 
“the change of f(x)” from the graph of f’(x), while the 
kinematics test asked them to find the “change in 
position” from the velocity graph. The second difference 
is that Carli et al. (2020) evaluated the concept of 
antiderivative in only one relationship, whereas our 
study evaluated it in both possible relationships. In the 
first relationship, we asked for the “change of f(x)” from 
the graph of f’(x), and the “change in position” from the 
velocity graph. In the second relationship, we asked for 
the “change of f’(x)” from the graph of f’’(x), and the 
“change in velocity” from the acceleration graph. Our 
approach aligns with the concept of accumulated 
change, as recommended by Thompson and Silverman 
(2008), and with Jones’ (2015) proposal of a 
multiplicatively based sum (Riemann sum), which is 
closely related to accumulated change. 

The third difference is that Carli et al. (2020) 
evaluated the concept of the derivative in only one 
relationship. In contrast, our study also examined the 
second relationship, assessing students’ understanding 
of the “second derivative” in calculus and “acceleration” 
in kinematics. It is important to highlight that our 
experimental design builds upon previous studies, 
aiming to provide a more comprehensive and 
isomorphic comparison between contexts. We will 
further explore how our findings relate to and expand 
upon the results of these earlier studies. 

METHODOLOGY 

The methodology of this study is divided into two 
subsections: participants and instruments. The 
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participants’ subsection provides details about the 
sample of engineering students who participated in the 
study. In contrast, the instruments subsection describes 
the tools used to assess their understanding of the 
derivative and antiderivative concepts across calculus 
and kinematics contexts. 

Participants 

The study was conducted at a large private university 
in Mexico, involving engineering students completing 
their introductory calculus-based mechanics course and 
their first calculus course. The mechanics course is the 
first of three introductory physics courses required for 
students at this institution. The calculus course covers 
key topics such as linear functions, qualitative analysis 
of functions and their first and second derivatives, 
quadratic functions, Euler’s method, and the derivative 
and applications of various models (polynomial, 
exponential, sine), along with basic integrals using 
substitution. A total of 543 students participated in the 
study: 284 students completed the test in the context of 
calculus, and 259 students completed it in the context of 
kinematics. Students were randomly assigned to take 
one version of the test or the other within each group. 

Instruments 

We used two isomorphic tests, each consisting of 
twelve items, in the context of calculus and kinematics, 
to evaluate the derivative and antiderivative concepts. 
The calculus test was based on a previous conceptual 
test, TUG-C (Dominguez et al., 2017), and the kinematics 
test was based on the new version of TUG-K (Zavala et 
al., 2017). In Appendix A, we present the two tests used. 
Figure 1 shows item 1 for both tests. 

Table 1 describes both tests used in this study. It 
describes the four dimensions of the tests, the items 
contained in each dimension, the concepts evaluated, 
and the specific relationship evaluated.  

Dimension 1 and dimension 2 of both tests are related 
since both assess the understanding of the derivative as 
slope. Dimension 3 and dimension 4 are also related 
since both assess the understanding of the antiderivative 
as the area under the curve. Our approach to asking for 
the antiderivative is in accordance with the accumulated 
change concept (Jones, 2015; Thompson & Silvermann, 

2008). The difference in these related dimensions is the 
relationship that is evaluated. Table 2 shows a detailed 
description of the items. 

Table 2 shows that the related dimensions items were 
assessed in the same way as the concept that is 
evaluated. The three items of the related dimension 1 
and dimension 2 ask:  

(1) to determine the positive value of a derivative,  

(2) to determine the negative value of the derivative, 
and  

(3) to identify the interval in which the derivative is 
the most negative.  

The three items of the related dimension 3 and 
dimension 4 ask:  

(1) to establish the procedure to determine the change 
of an antiderivative,  

(2) to determine the value of the change of an 
antiderivative, and  

(3) to identify the variable whose antiderivative has 
the greatest change in a specific interval.  

Note that the first two items of each of the dimensions 
focus on obtaining a variable’s value, and the third item 
focuses on finding a maximum of this variable. 

Finally, it is important to establish why it was 
decided to shorten the versions of the tests used in this 
study. Our original version of the TUG-C has 16 items, 
while the tests used in this study have 12 items, so four 

 
Figure 1. Item 1 of both tests used in this study (Source: 

Authors’ own elaboration, see Appendix A) 

Table 1. Description of the isomorphic tests (kinematics/calculus version) used in this study by its dimension 

Dimension Description Items Concept Relationship evaluated 

1 Determine f’(x)/ velocity from the graph of 
f(x)/position 

1, 4, & 10 The derivative 
as the slope 

f(x) → f’(x) / Position → velocity 

2 Determine f’’(x)/acceleration from the graph of 
f’(x)/velocity 

5, 8, & 2 f’(x)→ f’’(x) / 
Velocity → acceleration 

3 Determine the change of f(x)/the change of position 
from the graph of f’(x)/velocity 

3, 11, & 12 The 
antiderivative as 
the area under 

the curve 

f’(x) → Δf(x) / 
Velocity → Δ position 

4 Determine the change of f’(x)/the change of velocity 
from the graph of f’’(x)/acceleration 

9, 6, & 7 f’’(x)→ Δf’(x) / 
Acceleration → Δ velocity 
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items were not included. It was decided not to include 
the four items where a graph is presented and asked to 
identify the corresponding graph (either its derivative or 
antiderivative) because being rigorous, these items can 
be answered by students using either the concept of 
derivative or the concept of the antiderivative.  

RESULTS 

Table 3 presents the results for the twelve items of the 
test. We present the percentages of students’ answers for 

each option for each item in the calculus and kinematics 
tests. In Table 3, the correct option is bold, and there is a 
comparison between the results of students taking either 
the calculus or the kinematics test. We will discuss later 
whether or not there are significant differences between 
the answers. 

Reliability and Discriminatory Power of the Tests 

We perform the five statistical tests suggested by 
Ding et al. (2006) to evaluate the reliability and 
discriminatory power of the tests. Three measures 

Table 2. Description of the items of the isomorphic tests (kinematics/calculus version) by its dimension 

Dimension Description of the items 

1 1. Determine the positive value of f’(x)/the velocity from the graph of f(x)/position 
4. Determine the negative value of f’(x)/ the velocity from the graph of f(x)/position 
10. Identify the interval in which f’(x)/the velocity is the most negative in the graph of f(x)/position 

2 5. Determine the positive value of f’’(x)/ the acceleration from the graph of f’(x)/velocity 
8. Determine the negative value of f’’(x)/ the acceleration from the graph of f’(x)/velocity 
2. Identify the interval in which f’’(x)/ the acceleration is the most negative in the graph of f’(x)/velocity 

3 3. Establish the procedure to determine the change of f(x)/change of position from the graph of f’(x)/velocity 
11. Determine the value of the change of f(x)/change of position from the graph of f’(x)/velocity 
12. Identify the f(x) with the greatest change/ the object that has the greatest change in position from several graphs 
of f’(x)/velocity 

4 9. Establish the procedure to determine the change of f’(x)/change of velocity from the graph of f’’(x)/acceleration 
6. Determine the value of the change of f’(x)/change of velocity from the graph of f’’(x)/acceleration 
7. Identify the f’(x) with the greatest change/ the object that has the greatest change in velocity from several graphs 
of f’’(x)/acceleration 

 

Table 3. Results of all the items 

Item Item description Context 
Percentage (%) 

A B C D E 

1 Determine the positive value of f’(x)/the velocity from the graph of 
f(x)/position 

Calculus 12 6 38 26 18 
 ↕   ↕ ↕ 

Kinematics 4 3 38 49 5 
2 Identify the interval in which f’’(x)/ the acceleration is the most negative in the 

graph of f’(x)/velocity 
Calculus 6 20 9 6 58 

     ↕ 

Kinematics 3 14 7 2 73 

3 Establish the procedure to determine the change of f(x)/change of position from 
the graph of f’(x)/velocity 

Calculus 5 60 29 4 2 
 ↕ ↕ ↕ ↕  

Kinematics 1 71 16 11 1 
4 Determine the negative value of f’(x)/ the velocity from the graph of 

f(x)/position 
Calculus 49 8 8 22 13 

    ↕ ↕ 

Kinematics 57 4 3 34 2 
5 Determine the positive value of f’’(x)/ the acceleration from the graph of 

f’(x)/velocity 
Calculus 45 5 24 15 11 

   ↕ ↕ ↕ 

Kinematics 51 3 39 5 2 
6 Determine the value of the change of f’(x)/change of velocity from the graph of 

f’’(x)/acceleration 
Calculus 14 15 11 50 10 

      

Kinematics 11 17 7 53 13 
7 Identify the f’(x) with the greatest change/ the object that has the greatest change 

in velocity from several graphs of f’’(x)/acceleration 
Calculus 10 29 4 29 27 

      
Kinematics 17 30 2 27 25 

8 Determine the negative value of f’’(x)/ the acceleration from the graph of 
f’(x)/velocity 

Calculus 15 52 9 14 10 
 ↕    ↕ 

Kinematics 24 57 7 10 2 
9 Establish the procedure to determine the change of f’(x)/change of velocity from 

the graph of f’’(x)/acceleration 
Calculus 66 20 6 5 3 

   ↕   
Kinematics 70 18 2 4 6 
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examine individual test items: difficulty index, 
discriminatory index, and point biserial.  

Table 4 presents these values for each item on the two 
tests. The other two measures examine the test as a 
whole: Kuder-Richardson’s reliability test and 
Ferguson’s delta test. We discuss the results of these 
statistical tests below. 

The item difficulty index (P) measures the difficulty 
of a single item, and the criterion is that this index should 
be between 0.3 and 0.9 (Ding et al., 2006). As shown in 
Table 4, only two items on the TUG-C, item 7 (0.29) and 
item 12 (0.24), have indexes slightly lower than the 
desired, and no item on the TUG-K has an index lower 
than the desired. Researchers also suggest the 
calculation of the average value. The average difficulty 
values for the TUG-C and TUG-K are 0.49 and 0.56, 
respectively (Table 5), which fall into the suggested 
range [0.3-0.9]. 

The item discriminatory index (D) measures each 
item’s discriminatory power, and the criterion is that this 
index should be above 0.3 (Ding et al., 2006). All the 

items of both tests fulfill this criterion (using the 25%-
25% method). Investigators also recommend calculating 
the average value. For the TUG-C and the TUG-K, the 
average discriminatory values are 0.70 and 0.71, 
respectively, which meet the criterion (above 0.3). 

The point-biserial coefficient (rpbs) measures the 
consistency of a single item in relation to the whole test, 
and the criterion is that it should be above 0.2 (Ding et 
al., 2006). All the items of both tests fulfill this criterion. 
Researchers also recommend the calculation of the 
average coefficient. For the TUG-C and the TUG-K, the 
average coefficient values are 0.56 and 0.58, respectively, 
which fulfill the criterion (above 0.2). 

Next, we focus on the two measures that examine the 
tests as a whole. Kuder-Richardson´s reliability test 
measures the self-consistency of the test, and the 
criterion is that this value should be above 0.7 for group 
measures (Ding et al., 2006). The indexes for the TUG-C 
and TUG-K are 0.80 and 0.83, respectively (Table 5), 
which meet this criterion. Furthermore, Ferguson’s delta 
test measures the discriminatory power of the test, and 

Table 3 (Continued). Results of all the items 

Item Item description Context 
Percentage (%) 

A B C D E 

10 Identify the interval in which f’(x)/the velocity is the most negative in the 
graph of f(x)/position 

Calculus 11 61 10 14 4 
  ↕ ↕   

Kinematics 10 73 3 12 2 
11 Determine the value of the change of f(x)/change of position from the graph of 

f’(x)/velocity 
Calculus 11 50 11 20 7 

 ↕  ↕ ↕  

Kinematics 20 60 4 12 3 
12 Identify the f(x) with the greatest change/ the object that has the greatest change in 

position from several graphs of f’(x)/velocity 
Calculus 24 28 14 29 2 

  ↕    
Kinematics 34 18 19 28 1 

Note. The correct answer is in boldface; bold arrows (↕) indicate the options that have significant differences with p < 0.01 

on Chi-square test; & double-bracket symbols () indicate the options that have significant differences with 0.05 < p < 0.01 

Table 4. Item difficulty index (P), item discriminatory index (D), and point-biserial coefficient (rpbs) for each item of the 
calculus (TUG-C) and kinematics (TUG-K) isomorphic tests 

TUG-C (short version) 
 1 2 3 4 5 6 7 8 9 10 11 12 
P 0.38 0.58 0.60 0.49 0.45 0.50 0.29 0.52 0.66 0.61 0.50 0.24 
D 0.54 0.72 0.55 0.86 0.85 0.87 0.62 0.65 0.75 0.59 0.77 0.68 
rpbs 0.50 0.55 0.42 0.64 0.66 0.64 0.55 0.53 0.53 0.50 0.59 0.63 

TUG-K (short version) 
 1 2 3 4 5 6 7 8 9 10 11 12 

P 0.38 0.73 0.71 0.57 0.51 0.53 0.30 0.57 0.70 0.73 0.60 0.34 
D 0.71 0.56 0.65 0.83 0.88 0.71 0.66 0.74 0.71 0.54 0.83 0.69 
rpbs 0.59 0.44 0.58 0.67 0.72 0.58 0.54 0.59 0.62 0.42 0.66 0.57 

 

Table 5. Summary of the results of the test statistics for the calculus (TUG-C) and kinematics (TUG-K) tests 

Test statistic Desired values TUG-C (short version) TUG-K (short version) 

Difficulty index [0.3, 0.9] Average: 0.49 Average: 0.56 
Discriminatory index ≥ 0.3 Average: 0.70 Average: 0.71 
Point-biserial coefficient ≥ 0.2 Average: 0.56 Average: 0.58 
Kuder-Richardson reliability index ≥ 0.7 for group measures 0.80 0.83 
Ferguson’s delta test >0.9 0.99 0.99 
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the criterion is that this value should be above 0.9 for 
good discrimination. Ferguson’s delta test for both tests 
is 0.99, which satisfies this requirement. Finally, we 
show a summary of the five statistical tests in Table 5. 
Based on these analyses, we can conclude that both tests 
are reliable instruments with satisfactory discriminatory 
power. 

Students’ Overall Performance on Both Tests 

The average score of the calculus test (TUG-C short 
version) is 5.83 out of 12 possible (each test item is worth 
1 point). The distribution of these scores is not normal (D 
(284) = 0.1, p < 0.01). For this type of distribution, using 
the quartile as the measure of spread is preferable. The 
distribution median is 6, the bottom quartile (Q1) is 3, 
and the top quartile (Q3) is 8, so the interquartile range 
is 5. On the other hand, the average score of the test of 
kinematics (TUG-K short version) is 6.63. The 
distribution of these scores is also not normal (D (259) = 
0.1, p < 0.01). The median of this distribution is 6, the 
bottom quartile (Q1) is 4, and the top quartile (Q3) is 10, 
so the interquartile range is 6. 

Since neither distributions of scores were normal and 
their variances met the assumption of homogeneity of 
variance (p < 0.05; in a non-parametric Levene’s test, 
Nordstokke and Zumbo (2010) and Nordstokke et al. 
(2011)), we decided to perform the comparison of both 
distributions using the nonparametric Mann-Whitney 
test (Field, 2013). This test indicates that the scores 
obtained by students in the kinematics test were 
significantly higher than those obtained by students in 
the test of calculus, U = 42109.0, p = 0.003, r = 0.13. 
Comparing the average scores in both tests (5.83 in 
calculus and 6.63 in kinematics), we can establish that the 
difference in average is about one question of the twelve 
questions. 

 

Students’ Performance in the Dimensions of Both 
Tests 

Table 6 and Table 7 show the correct answer 
percentages of the items grouped in each of the four 
dimensions and the averages of these percentages. Next, 
we analyze the students’ performances. 

As noted in Table 6 and Table 7, the average 
percentages of the four dimensions of the two tests are 
very close, ranging from 45% to 60%. Also, we note that 
the score is greater in all the averages in the context of 
kinematics. In dimension 1, the difference is 7%, in 
dimension 2, 8%, in dimension 3, 10%, and finally, in 
dimension 4, 3%. 

Dimension 1 and dimension 2 and dimension 3 and 
dimension 4 are directly related as the first evaluates the 
concept of the derivative as slope, while the latter 
evaluates the concept of the antiderivative as the area 
under the curve. As mentioned above, the difference 
between these dimensions is only in the relationship that 
is evaluated. Interestingly, the averages obtained in 
these related dimensions are very similar for each test. In 
the calculus test, the average percentages of dimension 1 
and dimension 2 are 49% and 52%, respectively, while 
the percentages in dimension 3 and dimension 4 are 45% 
and 48%. Moreover, in the kinematic test, dimension 1 
and dimension 2 average percentages are 56% and 60%, 
while those in dimension 3 and dimension 4 are 55% and 
51%. As seen in all cases, the averages have a difference 
of less than 5%. These results show that the overall 
understanding of students on the concepts of derivative 
and antiderivative are similar in each of the contexts in 
the two relationships that are evaluated. 

Overview of the Effect of Context on Performance in 
Each of the Test Item 

We use the Chi-square test to compare students’ 
performances and detect significant differences. 

Table 6. Correct answer percentages of the items of the related dimension 1 and dimension 2, understanding of the concept 
of the derivative as slope 

Description of items that evaluate the concept of derivative 
Dimension 1 Dimension 2 

Item TUGC TUGK Item TUGC TUGK 

Determine the positive value of a derivative 1 38% 38% 5 45% 51% 
Determine the negative value of a derivative 4 49% 57% 8 52% 57% 
Identify the interval in which the derivative is the most negative 10 61% 73% 2 58% 73% 
Average  49% 56%  52% 60% 

 

Table 7. Correct answer percentages of the items of the related dimension 3 and dimension 4, understanding of the concept 
of antiderivative as the area under the curve 

Description of items that evaluate the concept of antiderivative 
Dimension 3 Dimension 4 

Item TUGC TUGK Item TUGC TUGK 

Establish the procedure to determine the change of an antiderivative 3 60% 71% 9 66% 70% 
Determine the change of an antiderivative 11 50% 60% 6 50% 53% 
Identify the variable whose antiderivative has the greatest change in a 
specific interval 

12 24% 34% 7 29% 30% 

Average  45% 55%  48% 51% 
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According to Sheskin (2007), detecting significant 
differences requires two steps using the Chi-square test. 
The first one uses the Chi-square test (p < 0.05) to 
determine whether there was a significant difference in 
the distribution of answers between the two problems. If 
this difference does exist, it is followed by the second 
step. In this latter step, the Chi-square test is used to 
determine which specific option is significantly 
different. Sheskin (2007) mentions that there is no 
consensus on the p-value for this second step. Some 
researchers recommend using the Bonferroni correction, 
dividing the original p-value (0.05) by the total number 
of comparisons (five, one for each multiple choice) for a 
conservative p-value of 0.01, thus avoiding inflating the 
error type I. On the other hand, other researchers 
consider that this correction is extremely severe since it 
substantially reduces the power associated with each 
comparison and that, in the final analysis, one must 
decide what p-value (per comparison) results on a fair 
balance in terms of the likelihood of committing the type 
I error and the power associated with a comparison. 

Because of this lack of consensus for the second step, 
in this study, we decided to identify the options 
separately with a significant difference with a p-value 
less than 0.01 and options with a significant difference 
with a p-value less than 0.05 but greater than 0.01. It is 
important to mention two notes about this. First, most of 
the differences detected in this study are less than 0.01 
(22 out of the 28 significant differences detected in the 12 
items are below this value). Second, in this study, we 
focus on the significant differences repeated in the 
related items and identify them as trends. Table 8 shows 
a classification of items according to these trends. 

As seen in Table 8, we clustered the items by 
significant differences detected in selecting the correct 
answer. In Table 8, we identify two groups of related 
items (first and second group), and we find that students 
in the kinematics context choose the correct answer in a 

greater proportion than those students who choose the 
correct answer in the calculus context. On the other 
hand, in Table 8, we identify two other groups of related 
items (third and fourth group), where we find no 
differences in selecting the correct answer. We did not 
find any item in which students in the calculus context 
chose the correct answer in a greater proportion than 
those students who chose the correct answer in the 
kinematics context. Finally, in Table 8, we also establish 
whether we find general trends in selecting incorrect 
answers in the four groups of items. Next, we analyze 
the items in Table 8. We analyze:  

(1) the differences in the selection of the correct 
answers,  

(2) the most frequent errors, and  

(3) the differences in the selection of the incorrect 
answers.  

Items With Significant Differences in the Selection of 
the Correct Answer 

We analyzed the two item groups and found 
significant differences in selecting the correct answer. 

First group: Items of dimension 1 and dimension 2 that 
evaluate the identification of the interval in which the 
derivative is the most negative  

Table 3 and Table 7 show the results of the two items 
of the first group of dimension 1 and dimension 2 (item 
10 and item 2) that evaluate the identification of the 
interval in which the derivative is the most negative. 
Item 10 asks to identify the interval in which the first 
derivative or the velocity is the most negative, and item 
2 asks to identify the interval in which the second 
derivative or the acceleration is the most negative. (Note 
that in both items the slopes are constant in all the 
intervals on the graphs.) In both items, the percentage of 

Table 8. Classification of items according to the differences found in the selection of the correct and incorrect answers 

Division of items 
by the selection 
of the correct 
answer 

Group of items Items 
Correct 
answer 

(calculus) 

Correct 
answer 

(kinematics) 

General trends 
detected in the 

selection of incorrect 
answers 

Items with 
significant 
differences in the 
selection of the 
correct answer 

First group: Items of dimension 1 and dimension 
2 that evaluate the identification of the interval in 

which the derivative is the most negative 

10 61% 73% Trends detected 
2 58% 73% 

Second group: All the items of dimension 3 3 60% 71% Trends detected 
11 50% 60% 
12 24% 34% 

No significant 
differences in the 
selection of the 
correct answer 

Third group: Items of dimension 1 and 
dimension 2 that evaluate the determination of 

the value of a derivative 

1 38% 38% Trends detected 
4 49% 57% 
5 45% 51% 
8 52% 57% 

Fourth group: All the items of dimension 4 9 66% 70% No trends detected 
6 50% 53% 
7 29% 30% 
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correct answers is significantly higher in kinematics than 
in calculus (item 10: 73% vs. 61%; item 2: 73% vs. 58%).  

Table 3 shows that the most common error in item 10 
for both contexts is selecting option D (14% in calculus 
and 12% in kinematics), while in item 2, the most 
frequent error is selecting option B (20% and 14%, 
respectively). In both items, these errors involve 
choosing an interval where the derivative is negative but 
not the most negative. This pattern is consistent across 
both contexts, with no significant difference between the 
groups of students who made this error. The primary 
issue in students’ understanding appears to be 
identifying the steepest slope rather than recognizing the 
sign of the slope. Additionally, students’ choices may 
reflect a naïve misconception–often called slope-height 
confusion–since the selected interval is the only one on 
the graph with negative values on the y-axis. 

We also observe that in both items, the context of 
calculus triggers the incorrect answer in which students 
identify the interval requested with the interval in which 
the derivative is the most positive instead of the most 
negative (option C in item 10: 10% vs. 3%; option A in 
item 2: 6% vs. 3%). It is important to mention that these 
differences are from percentages equal to or lower than 
10%. This fact reduces, in some way, the importance of 
the result. However, since that interval has the greatest 
absolute value rate of change, it might not be clear to 
these students that the slope has a sign in calculus. With 
significantly less proportion that happens to students 
who took the test in kinematics.  

Second group: Items of dimension 3 

Table 3 and Table 7 show the results of the three 
items of the second group (items 3, 11, and 12). These are 
all the items of dimension 3 that ask to determine the 
change of f(x) from the graph of f’(x) (in calculus) or the 
change of position from the graph of velocity (in 
kinematics). The percentage of correct answers in the 
three items is significantly higher in kinematics than in 
calculus (item 3: 71% vs. 60%; item 11: 60% vs. 50%; item 
12: 34% vs. 24%).  

From Table 3, we can also analyze the most frequent 
errors in the three items. Item 3 asks students to establish 
the procedure to determine a change of f(x) in an interval 
from the graph of f’(x) or a change of position in an 
interval from the velocity graph (note that the slope of 
the curve is constant in intervals). The most frequent 
error in item 3 for both contexts is option C. In this error, 
students establish that calculating the requested change 
is the procedure to calculate the slope of the curve 
instead of the area under the curve. The most frequent 
incorrect answer in the kinematics test is option D. In the 
case of calculus, 4% of students chose that answer, too. 
However, the 11% in the case of kinematics is 
significantly higher. To understand this difference, 
analyzing the resources students use is necessary. The 

change of position is asked in the kinematics problem, 
and students who choose this common error in 
kinematics might incorrectly use the equation d = vt as a 
resource (Beichner, 1994). Students might think that if 
they have the velocity (5 m/s) and time (2 s), they can 
calculate distance by multiplying those two.  

Item 11, in the context of calculus, asks to calculate 
the change of f(x) from the graph of f’(x) in the interval 
from x = 0 to x = 4. In the context of kinematics, the 
problem asks to find the change of position from the 
velocity graph in the interval from t = 0 to t = 4 s. (Note 
that the slope of the curve is also constant in the interval). 
The most frequent error in this item is different in the 
two contexts. In the context of calculus, the most 
frequent error is to choose the value of the slope of the 
curve instead of the value of the area under the curve 
(option D). On the other hand, in the context of 
kinematics, the most frequent error (option A) is to 
choose the value (‘20’) that is obtained by multiplying 
the horizontal change in the interval (which is 4) by the 
vertical change in the interval (which is 5). Like what 
happened with item 3, students might use the equation 
d = vt as a resource. The fact that this error is not the most 
common in the same context in item 3 appears to be 
because item 11 explicitly calls for a value (not a 
procedure). This seems to make students in the 
kinematics context analyze by using formulas as 
resources. In the case of calculus, there is no 
interpretation like that in kinematics in which students 
relate. In this case, the most common incorrect answer 
for item 11 is the same as the most common incorrect 
answer for item 3, which is related to interval-point 
confusion. Another important factor to consider when 
comparing item 3 and item 11 is that the options listed in 
item 3 appear two terms that can greatly influence 
students’ responses. These terms are “area” (in the 
correct answer) and “slope” in one of the most common 
wrong answers. Therefore, in the TUG-C, the term 
“slope” was very attractive to students; instead, the 
distance formula d = vt was more attractive in TUG-K. 

Item 12 asks to identify the f(x) with the greatest 
change from several graphs of f’(x) or the object that has 
the greatest change in position from several graphs of 
velocity. The most frequent error in item 12 for both 
contexts is option D. In this error students do not choose 
the graph with the curve with the greatest area under it 
(option A), but a graph with a curve whose slopes in the 
interval are always positive and increasing. In this item 
students seem also to be thinking regarding slope in both 
contexts. That is, this item asks for a function with the 
greatest change in the interval and students choose the 
curve that has the greatest change in positive slopes. 
Note that option B is an option with the greatest change 
in slope (goes from positive, to zero and negative values) 
and it is the very attractive answer in the context of 
calculus, but less in kinematics; that is why it is discussed 
below as a trend. 
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As seen in Table 3, in the items of this group we also 
detected significant differences in the selection of 
incorrect options. In item 3 and item 11 that ask explicitly 
to determine the change in a function, we found three 
tendencies. The first tendency is that the context of 
calculus triggers the selection of the value of the slope of 
the curve instead of the value of the area under the curve 
(option C in item 3: 29% vs. 16%; option D in item 11: 
20% vs. 12%). The second tendency is that the context of 
calculus triggers the selection of the vertical value of the 
curve at the right point of the interval (option A in item 
3: 5% vs. 1%; option C in item 11: 11% vs. 4%). The third 
tendency is that the context of kinematics triggers the 
selection of the value that is obtained by multiplying the 
horizontal change in the interval by the vertical change 
in the interval (option D in item 3: 11% vs. 4%; option A 
in item 11: 20% vs. 11%). As mentioned, these latter 
students use the equation d = vt as a resource. 

In item 12 we found only one tendency in selecting an 
incorrect option. The context of calculus triggers the 
selection of a symmetrical concave down graph with a 
curve that increases in the first half of the interval and 
decreases in the other half (option B: 28% vs. 18%). This 
trend can be understood from the two first tendencies 
detected in item 3 and item 11 (slope and y-value). The 
first is that the context of calculus triggers the selection 
of the slope value. In item 12, students also seem to be 
thinking about slope. This item asks for a variable with 
the greatest change in the interval and students choose 
the curve with the greatest change in slope as it begins in 
a high positive value and ends at the same value but 
negative. The second trend is that the context of calculus 
triggers the reading of the y-value. Students seem to 
think this curve has the greatest change in the y-value 
since it goes from zero to a high value and then decreases 
to zero again (as we have seen in student interviews). 

Items With No Significant Differences in the 
Selection of the Correct Answer 

Next, we analyze the two groups of items that meet 
this feature: no significant differences in selecting the 
correct answer. 

Third group: Items of dimension 1 and dimension 2 that 
evaluate the calculation of the value of a derivative  

Table 3 and Table 7 show the results of the four items 
of the third group (items 1, 4, 5, and 8) of dimension 1 
and dimension 2 that evaluate the determination of the 
value of a derivative at a point of a curve. Item 1 and item 
4 ask to determine the value of the first derivative or the 
velocity (positive and negative value, respectively), and 
item 5 and item 8 ask to determine the value of the 
second derivative or the acceleration (positive and 
negative value, respectively). In the items of this group, 
we detected no significant differences in the selection of 
the correct answer.  

From Table 3, we can also analyze the most frequent 
errors in the four items of this group. It is very interesting 
to note that in the four items for both contexts, the most 
common error is the same. As mentioned before, these 
items evaluate the determination of the value of a 
derivative at a point of a curve. The most frequent error 
is to obtain this value by dividing the vertical value of 
the curve at the point by the horizontal value of the point 
in situations where this is not applicable (option D in 
item 1 and item 4, option C in item 5, and option A in 
item 8). It is important to note that in the items that ask 
for a negative derivative (item 4 and item 8), students 
add a negative sign to the value obtained in this division. 

As seen in Table 3, we detected significant 
differences in the selection of incorrect options for the 
items of this group. Analyzing these differences globally 
shows that only two significant differences are repeated 
in all group items. These differences can be identified as 
general tendencies and due to this fact, have great 
instructional value. We decided to focus on these 
tendencies in this study. The first tendency is that the 
context of kinematics triggers the selection of the option 
in which students divide the vertical value of the curve 
at the point by the horizontal value of the point in 
situations where this is not applicable (item 1 and item 4 
option D; item 5 option C; item 8 option A). As 
mentioned, this is the most frequent error of all the items. 
To understand this, it is necessary to analyze the 
resources students use. The kinematics problem is asked 
to determine the velocity or the acceleration, and 
students who choose this option in kinematics seem to 
use the equations v = d/t or a = v/t as resources. 

The second trend is that the context of calculus 
triggers the selection of the option in which students 
choose the vertical value of the curve at the point instead 
of the slope value at the point (option E items 1, 4, and 8; 
option D item 5). We can see that it is more common in 
calculus for students to identify the value of the first 
derivative at a point with the value of the function at that 
point than in kinematics. In this latter case, students 
identify the velocity value at a specific time with the 
position’s value at that specific time (item 1 and item 4). 
We can also note that it is more common for calculus 
students to identify the value of the second derivative at 
a point with the value of the first derivative at that point 
than in kinematics. In this case, students identify the 
value of the acceleration at a specific time with the value 
of the velocity at that specific time (item 5 and item 8). 

Fourth group: Items of dimension 4 

Table 3 shows the results of the three items of the 
fourth group (items 9, 6, and 7). These items are from the 
fourth dimension and ask to determine the change of 
f’(x) from the graph of f’’(x) (in calculus) or the change of 
velocity from the graph of acceleration (in kinematics). 
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In these items, we detected no significant differences in 
selecting the correct answer.  

From Table 3, we can analyze the most frequent 
errors in the three items of this group. It is very 
interesting to note that in the three items for both 
contexts, the most common error is the same. Students 
identified the requested value (area under the curve) 
with the slope value. In item 9, students establish the 
procedure to obtain a slope (option B). In item 6, students 
obtain the value of a slope (option B). Finally, in item 7, 
students think about slopes and choose the curve with 
the greatest change in positive slopes (option D) instead 
of the curve with the greatest area under it. 

As shown in Table 3, in this group, we did not 
observe general trends in selecting incorrect answers. 
The lack of tendencies contrasts with what we detected 
in the other three groups, where we observed the general 
trends described above. In this group, we only observed 
two significant differences isolated in two items. In item 
9, the context of calculus triggers the selection of the 
vertical value of the curve at the right point of the 
interval instead of the area under the curve (option C). 
Additionally, in item 7, the context of kinematics triggers 
the selection of a curve with a constant positive slope 
instead of a curve with a constant value and maximum 
area under it (option A). These trends are isolated, and it 
is important to note that the first has a difference of very 
low percentages (6% vs. 2%), and the second trend has a 
p-value that is not less than 0.01. As mentioned, it was 
decided to focus solely on the general trends due to its 
greater instructional value.  

DISCUSSION 

We discuss the main findings of this study relating 
them with previous studies (Carli et al., 2020; Ivanjek et 
al., 2016; Planinic et al., 2013) described in Section 2. 
Additionally, we establish possible future studies on 
each topic.  

Effect of Context on Students’ Scores 

We concluded that students scored significantly 
higher on the kinematics test than the calculus test 
(objective 1). When comparing the average scores 
between the two tests–5.83 for calculus and 6.63 for 
kinematics–the difference amounts to approximately 
one question out of twelve. This general finding can be 
further understood by analyzing student performance 
on individual test items (objective 3). As discussed 
earlier, we found that for two groups of items, a greater 
proportion of students selected the correct answer in the 
kinematics context. This likely explains the overall 
higher performance of students in the kinematics test. 

Our study found that students performed better in 
the kinematics context, which contrasts with previous 
research (Carli et al., 2020; Ivanjek et al., 2016; Planinic et 
al., 2013), where higher scores were observed in the 

mathematics context. As discussed before, a key 
difference between those studies and ours lies in how the 
questions were framed in the context of mathematics. 
This variation in question phrasing likely explains the 
discrepancy between our findings and previous research 
findings. Our aim was to provide a more comprehensive 
and isomorphic comparison between the two contexts, 
as outlined earlier. Future research should further 
explore how question phrasing affects students’ 
graphical understanding of these concepts. 

Effect of Context on Students’ Performance on Each 
Item 

In this section, we present a synthesis of the effect of 
the context on students’ performance on each item of the 
tests (related to objective 2 and objective 3), focusing on 
related dimensions. The items from the two tests were 
concentrated into four groups (Table 7).  

The first and third groups of items correspond to 
dimension 1 and dimension 2, which assess students’ 
understanding of the derivative as slope. In the third 
group of items, which focus on determining whether the 
value of the derivative at a point is positive or negative, 
we did not observe any significant context effect on 
students’ ability to select the correct answer. However, 
in the first group of items, which requires identifying the 
interval where the derivative is most negative, students 
performed significantly worse in the calculus context 
compared to the kinematics context. Overall, these 
findings suggest that students have a similar 
understanding of how to determine positive and 
negative derivative values in both contexts. However, 
they struggle to identify the interval of the greatest 
negative slope in the calculus context. 

The second and fourth groups consist of items from 
dimension 3 and dimension 4, which assess students’ 
understanding of the antiderivative as the area under a 
curve. In the second group, items from dimension 3 
evaluate the calculation of the change in f(x) from the 
graph of f’(x) (in calculus) or the change in position from 
the graph of velocity (in kinematics). Here, we observed 
significantly higher performance in the kinematics 
context. In contrast, in the fourth group, which includes 
items from dimension 4 that assess the determination of 
the change in f’(x) from the graph of f’’(x) (in calculus) or 
the change in velocity from the graph of acceleration (in 
kinematics), there was no significant context effect on 
students’ selection of the correct answer. 

Next, we compare our findings with previous 
studies’ findings (Carli et al., 2020; Ivanjek et al., 2016; 
Planinic et al., 2013). First, we focus on the results related 
to students’ understanding of the concept of slope. 
Planinic et al. (2013) and Ivanjek et al. (2016) concluded 
that students’ understanding of slope is similar across 
mathematics and kinematics contexts. This finding 
aligns with one of our results regarding students’ 
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understanding of the derivative as a slope. Our study 
observed that students determined positive and 
negative derivative values similarly in both contexts. 
However, our study offers two significant contributions 
to this discussion. First, our comparison was aimed to be 
more comprehensive, as we evaluated two different 
relationships in both contexts, as outlined in Section 2. 
Second, we found that students had greater difficulty 
identifying the interval where the derivative is most 
negative in the calculus context, a challenge not 
highlighted in previous research. 

We can also compare our results on the concept of 
slope with those of Carli et al. (2020). Their study 
includes one item (question 3) closely related to our 
derivative items. In that question, students are presented 
with a graph and asked to determine the value of the 
“first derivative” in the calculus context and the value of 
“velocity” in the kinematics context. This is similar to 
our item 1, which asks students to determine the positive 
value of a derivative. Unlike our findings, Carli et al. 
(2020) reported that students performed better on the 
calculus item. As mentioned before, their participants 
were university students who had completed their first 
calculus course but had not yet taken their first physics 
course. In contrast, our participants had completed both 
their first calculus and physics courses. We believe this 
difference in participants’ academic backgrounds may 
account for the discrepancy in results. Additionally, our 
study aimed to offer a more comprehensive comparison, 
as outlined before. First, we included two additional 
items (item 4 and item 10) to evaluate understanding of 
the derivative. Second, we assessed this concept by 
exploring both possible relationships between the 
derivative and the context. 

We now turn to comparing the results regarding 
students’ understanding of the area under the curve. 
Planinic et al. (2013) and Ivanjek et al. (2016) found that 
students performed better on problems asking for the 
area under the curve in the context of mathematics than 
on similar problems in the context of kinematics. At first 
glance, this seems inconsistent with our findings. 
However, a closer analysis reveals the underlying 
differences. In our study, students performed 
significantly better on items asking them to determine 
the change in position from a velocity graph (kinematics) 
compared to items asking for the change in f(x) from the 
graph of f’(x) (calculus). Additionally, we found no 
significant difference in students’ performance on items 
asking for the change in velocity or the change in f’(x). A 
detailed comparison of the items used by Planinic et al. 
(2013) and Ivanjek et al. (2016) shows that their questions 
explicitly asked students to find the “area,” which may 
have been easier for university students. This likely 
explains the better performance in mathematics 
observed in their studies. 

We can also compare our findings related to the area 
under the curve with those of Carli et al. (2020). The 

researchers included an item (question 9) that aligns 
with our antiderivative items in their study. Their 
question asked students to determine the value of the 
“definite integral” in the calculus context and the value 
of “displacement” in the kinematics context. This is 
similar to our item 11, which asks students to determine 
the change of an antiderivative. Unlike our study, Carli 
et al. (2020) reported that students performed similarly 
across both contexts. We believe this difference may be 
attributed to the phrasing of the questions (“definite 
integral” in their study versus “change of f(x)” in ours), 
as well as the different participant groups. Additionally, 
we included two additional items (item 3 and item 12) to 
assess understanding of this concept and evaluated it by 
considering both possible relationships. 

In future studies, it would be valuable to explore how 
the phrasing of questions affects students’ 
understanding of these concepts across the two possible 
relationships. We recommend conducting these studies 
with participants who have completed both a calculus 
course and a mechanics course, which will cover these 
topics. Additionally, in our study, we observed that 
students performed significantly better on items asking 
them to determine the “change of position” (first 
relationship, kinematics) compared to those asking for 
the “change of f(x)” (calculus). However, no significant 
difference was found in performance on items assessing 
the “change of velocity” or “the change of f’(x)” (second 
relationship). Further research is needed to understand 
why responses related to these two relationships did not 
exhibit the same behavior patterns. 

Most Frequent Errors and the Errors Triggered in Each 
Context 

This section discusses the most frequent errors, and 
the errors triggered in each context (objective 3), 
focusing on related dimensions.  

The first and third groups of items assess students’ 
understanding of the derivative as slope (dimension 1 
and dimension 2). The third group focuses on calculating 
the value of a derivative (positive and negative) at a 
specific point. The most common error observed in this 
group is related to interval-point confusion, where 
students incorrectly divide the vertical value of the curve 
at a point by the horizontal value, even in situations 
where this approach is not applicable. We identified two 
general tendencies in students’ incorrect answer choices:  

(1) In the kinematics context, students are more likely 
to select the most frequent error, possibly due to 
reliance on equations such as v = d/t or a = v/t.  

(2) In the calculus context, students tend to choose the 
vertical value of the curve at the point, reflecting 
the slope-height confusion.  

When comparing our findings to previous studies, 
Carli et al. (2020) reported results consistent with both of 
these trends, while Ivanjek et al. (2016) observed only the 
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first trend. It is important to note that the latter study 
asked students to find the “slope” rather than the 
“derivative.” 

The items in the first group assess students’ ability to 
identify the interval where the derivative is most 
negative. The most common error occurs when students 
select an interval where the derivative is negative but not 
the most negative. Additionally, we observed a specific 
trend in the calculus context: students often choose the 
interval where the derivative is most positive, rather 
than the most negative, when asked to identify the 
correct interval. This particular trend was not found in 
previous studies, as similar types of questions were not 
included in their analyses. 

The six items in the second and fourth groups 
evaluate students’ understanding of the antiderivative 
as the area under a curve (dimension 3 and dimension 
4). In most items from these groups, the most frequent 
error is confusing the requested value (area under the 
curve) with the slope of the graph. Furthermore, in the 
three items from the second group (dimension 3), we 
identified three distinct trends in the selection of 
incorrect answers. 

The first two general tendencies observed in the three 
items are, as follows: in the calculus context, students 
often mistake the change in the function (represented by 
the area under the curve within an interval) for either the 
slope of the curve (trend 1) or the vertical value of the 
curve at the right endpoint of the interval (trend 2). 
These two tendencies may be interrelated. A common 
misconception is that the change in a function is directly 
linked to its rate of change, leading students to attempt 
to calculate the slope over the interval. Some successfully 
compute the slope, while others encounter an additional 
issue, known as slope-height confusion. When 
comparing our findings to previous studies, Carli et al. 
(2020) reported similar results to our trend 2 but did not 
identify trend 1. It’s important to note that they asked 
about the “definite integral,” whereas we asked about 
the “change of f(x)”. Additionally, these tendencies were 
not reported by Ivanjek et al. (2016). 

The third trend, found in two of the three items, is 
that students tend to select the value obtained in the 
kinematics context by multiplying the horizontal change 
in the interval by the vertical change. This can be 
explained by the fact that students often rely on the 
equation d = vt as a resource. Ivanjek et al. (2016) 
identified this tendency as one of the significant errors 
students made in the physics context, while Carli et al. 
(2020) did not report it. 

Finally, in future research, it would be valuable to 
investigate further how the phrasing of questions 
influences the most frequent errors and how they are 
triggered differently in each context. 

CONCLUSIONS 

In conclusion, this study highlights that the context in 
which graph-related concepts of derivatives and 
antiderivatives are taught significantly impacts 
students’ understanding and performance. Students 
performed better in kinematics contexts, likely due to the 
tangible, real-world nature of physical examples 
compared to the more abstract mathematical problems. 
This finding emphasizes the role of context in education 
and suggests that incorporating more concrete, real-
world examples into calculus instruction could enhance 
students’ comprehension. 

Despite stronger performance in kinematics, students 
still displayed persistent misconceptions, such as 
interval-point and slope-height confusion in calculus 
and the misapplication of formulas in kinematics. These 
results suggest the need for instructional strategies 
specifically targeting and correcting these errors. 
Educators should consider using contextually rich 
problems and providing clearer explanations to help 
address these common misunderstandings. 

Future research should explore the impact of 
different questioning strategies and further investigate 
the underlying causes of context-specific performance 
differences. Expanding the study to include a more 
diverse range of student populations and instructional 
approaches could offer a broader understanding of 
effectively teaching these key concepts. 

By focusing on these areas, educators can develop 
more effective teaching methods that improve students’ 
conceptual understanding and enhance their ability to 
apply these concepts across various contexts. This, in 
turn, can help build a stronger and more adaptable 
mathematical foundation. 

Instructional Recommendations 

In this study, we found significantly lower student 
performance in the calculus context compared to the 
kinematics context in two specific areas:  

(1) identifying the interval where the derivative is 
most negative and  

(2) determining the change in an antiderivative.  

These findings suggest that instructors should be 
mindful of students’ challenges with this type of 
problem in the calculus context. 

Additionally, we identified the most frequent errors 
for each item and pinpointed the incorrect options most 
commonly selected in each context. Instructors aiming to 
improve students’ understanding of these concepts 
across both contexts should consider these insights when 
planning their instruction. 
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APPENDIX A: TESTS USED IN THE STUDY 

TUG-C Shorter Version 

Notice that all the graphs in this questionnaire refer to a function f which depends on x, that is f(x). Also, note that 
f’(x) corresponds to the first derivative of the function with respect to x, and f’’(x) is the second derivative of the 
function with respect to x. Moreover, f(x), f’(x), and f’’(x) are graphed with respect to x, this means x is the variable 
on the horizontal axis.  

1. The following figure shows the graph of a function f(x). The first derivative of this function at x = 4 is: 

  

a. 0.5 

b. 12 

c. 2.5 

d. 5.0 

e. 20 

2. The following figure shows the graph of f’(x), the first derivative of a function. Which of the following options 
corresponds to the case when the second derivative of the function is the most negative? 

 

a. Q to S 

b. O to Q 

c. At Q 

d. At S 

e. S to U 

3. The following figure shows the graph of f’(x), the first derivative of a function. If you wanted to know the 
change in the function f(x) in the interval from x = 0 to x = 2, from the graph you would: 

 

a. Read 5 directly off the vertical axis. 

b. Find the area between the line and the horizontal axis by calculating 5*2/2.  

c. Find the slope of that line segment by dividing 5 by 2. 

d. Find the value multiplying 5 by 2. 

e. Find the value by dividing 2 by 5. 
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4. The following figure shows the graph of a function f(x). The first derivative of this function at x = 8 is about: 

 

a. -5.0 

b. -2.0 

c. -0.5 

d. -2.5 

e. 20 

5. The following figure shows the graph of f’(x), the first derivative of a function. At x = 25, the second derivative 
of the function is about: 

  

a. 8.0 

b. 2.0 

c. 4.0 

d. 100 

e. 60 

6. The following figure shows the graph of f’’(x), the second derivative of a function. The change in the first 
derivative of the function in the interval from x = 0 to x = 3 is: 

 

a. 1.5 

b. 0.67 

c. 2.0 

d. 3.0 

e. 6.0 
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7. Graphs of the second derivative for five functions are shown below. All axes have the same scale. Which of 
the following graphs corresponds to the function with the greatest change in its first derivative in the interval? 

a. 

 

b. 

 

c. 

 

d. 

 

e. 

 
8. The following figure shows the graph of f’(x), the first derivative of a function. At x = 90, the second derivative 

of the function is: 

 

a. -0.22 

b. -0.33 

c. -1.0 

d. -2.0 

e. 20 

9. The following figure shows the graph of f’’(x), the second derivative of a function. If you wanted to know the 
change in the first derivative of the function in the interval from x = 0 to x = 3, from the graph you would: 

 

a. Find the area between the line and the horizontal axis by calculating 10*3/2.  

b. Find the slope of that line segment by dividing 10 by 3. 

c. Read 10 directly off the vertical axis. 

d. Find the value by dividing 3 by 10. 

e. Find the value by multiplying 10 by 3. 

10. The following figure shows the graph of a function f(x). Which of the following options corresponds to the 
case when the first derivative of the function is the most negative? 

 
a. At I 

b. P to Q 

c. M to P 

d. G to I 

e. At P 
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11. The following figure shows the graph of f’(x), the first derivative of a function. The change in the function f(x) 
in the interval from x = 0 to x = 4 is: 

 

a. 20 

b. 10 

c. 5.0 

d. 1.25 

e. 0.8 

12. Graphs of the first derivative for five functions are shown below. All axes have the same scale. Which of the 
following graphs corresponds to the function f(x) with the greatest change in the interval? 

a. 

 

b. 

 

c. 

 

d. 

 

e. 

 

TUG-K Shorter Version 

Notice that all the graphs in this questionnaire refer to the motion of an object along a straight line, that is, in one 
dimension. Moreover, the position, velocity and acceleration of the object are graphed with respect to time; this 
means time is the variable on the horizontal axis. 

1. The following figure shows the position versus time graph of an object. The velocity of the object at t = 4 s is: 

 

a. 0.5 m/s 

b. 12 m/s 

c. 2.5 m/s 

d. 5.0 m/s 

e. 20 m/s 

2. The following figure shows the velocity versus time graph of an object. Which of the following options 
corresponds to the case when the acceleration of the object is the most negative? 
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a. Q to S 

b. O to Q 

c. At Q 

d. At S 

e. S to U 

3. The following figure shows the velocity versus time graph of an object. If you wanted to know the change in 
position of the object during the interval from t = 0 to t = 2 s, from the graph you would: 

 

a. Read 5 directly off the vertical axis. 

b. Find the area between the line and the horizontal axis by calculating 5*2/2. 

c. Find the slope of that line segment by dividing 5 by 2. 

d. Find the value multiplying 5 by 2. 

e. Find the value by dividing 2 by 5. 

4. The following figure shows the position versus time graph of an object. The velocity of the object at t = 8 s is 
about: 

 

a. -5.0 m/s 

b. -2.0 m/s 

c. -0.5 m/s 

d. -2.5 m/s 

e. 20 m/s 

5. The following figure shows the velocity versus time graph of an object. At t = 25 s, the acceleration of the object 
is about: 

 

a. 8.0 m/s2 

b. 2.0 m/s2 
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c. 4.0 m/s2 

d. 100 m/s2 

e. 60 m/s2 

6. The following figure shows the acceleration versus time graph of an object. The change in the velocity of the 
object during the interval from t = 0 to t = 3 s is: 

 

a. 1.5 m/s 

b. 0.67 m/s 

c. 2.0 m/s 

d. 3.0 m/s 

e. 6.0 m/s 

7. Acceleration versus time graphs for five objects are shown below. All axes have the same scale. Which of the 
following graphs corresponds to the object that has the greatest change in velocity during the interval? 

a. 

 

b. 

 

c. 

 

d. 

 

e. 

 

8. The following figure shows the velocity versus time graph of an object. At t = 90 s, the acceleration of the object 
is: 

 

a. -0.22 m/s2 

b. -0.33 m/s2 

c. -1.0 m/s2 

d. -2.0 m/s2 

e. 20 m/s2 

9. The following figure shows the acceleration versus time graph of an object. If you wanted to know the change 
in velocity of the object during the interval from t = 0 to t = 3 s, from the graph you would: 

 
a. Find the area between the line and the horizontal axis by calculating 10*3/2. 

b. Find the slope of that line segment by dividing 10 by 3. 

c. Read 10 directly off the vertical axis. 

d. Find the value by dividing 3 by 10. 

e. Find the value by multiplying 10 by 3. 
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10. The following figure shows the position versus time graph of an object. Which of the following options 
corresponds to the case when the velocity of the object is the most negative? 

 

a. At I 

b. P to Q 

c. M to P 

d. G to I 

e. At P 

11. The following figure shows the velocity versus time graph of an object. The change in the position of the object 
during the interval from t = 0 to t = 4 s is: 

 

a. 20 m 

b. 10 m 

c. 5.0 m 

d. 1.25 m 

e. 0.8 m 

12. Velocity versus time graphs for five objects are shown below. All axes have the same scale. Which of the 
following graphs corresponds to the object that has the greatest change in position during the interval? 

a. 

 

b. 

 

c. 

 

d. 

 

e. 
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