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Abstract 

Solving equations is known to bear several challenges for learners. We discuss an approach based 

on conceptual understanding regarding the transformation of equations with the help of the so-

called bar model in combination with the transposing strategy. First, we sketch shortly the main 

ideas that guided the development of the learning environment. Second, we discuss insights from 

the first design experiments with six students working with equation transformation in their 

regular school curriculum. These design experiments are embedded in a design research 

approach. In particular, we zoom into the semiotic processes of how learners connect several 

representations and emphasize a varying difficulty regarding single concept elements necessary 

to understand the concept of equivalent equations as a whole. Based on that, obstacles that come 

along with using the bar model are highlighted. Finally, we point to theoretical insights and 

implications for enhancing our learning environment. 

Keywords: algebra, bar model, solving equations, multiple representations, conceptual 

understanding 

 

INTRODUCTION 

Solving algebraic equations is a mathematical 
procedure that comes with various difficulties for the 
learners (see for an overview Bush & Karp, 2013; Kieran, 
2006). This variety of challenges reflects that several 
concepts are involved in this procedure. These include a 
basic understanding of variables as a fundamental 
prerequisite, the idea of equivalence, a proficient 
understanding of the equal sign, and knowledge 
concerning the transformation of algebraic expressions 
(Weinberg et al., 2016). This combination of conceptual 
understanding and knowledge of (syntactic) term 
manipulation poses challenges for learners in school 
algebra (e.g., Arcavi et al., 2016) that can persist until 
tertiary education (Weinberg et al., 2016). Several studies 
point to students’ poor use of mathematical symbols 
without a solid conceptual understanding (e.g., Knuth et 
al., 2011; Lee & Wheeler, 1989; Sfard & Lichevski, 1994). 
Other studies associate students’ hindrances with a lack 
of understanding of the meaning of operations in 
connection with abstract symbols (e.g., Bush & Karp, 

2013; Filloy & Rojano, 1989; Herscovics & Linchevski, 
1994). 

For the MuM-video project from which this paper 
stems, we started to construct a learning environment for 
teaching and learning to solve equations while stressing 
respective conceptual understanding (cf. Prediger & 
Roos, 2023). The learning environment aims at 
developing a basic conceptual understanding of 
expressions, their manipulation, and equivalence while 
providing a meaning-based language. To this end, we 
use an adaptation of the so-called bar model (or “model 
method”) from Singapore math (e.g., Hoven & Garelick, 
2007) as a promising tool to approach the idea of 
equivalence in the context of transforming equations. 
Our work has to be considered topic-specific design 
research (e.g., Gravemeijer & Cobb, 2006). Thus, it relies 
on the iterative interplay between designing teaching-
learning arrangements, conducting design experiments, 
and empirically analyzing the processes. In line with this 
research paradigm, we pursue several goals in this 
paper: First, we want to show the basic ideas of our 
usage of the bar model and describe what benefits the 
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bar model seems to have for our needs. Second, we want 
to investigate students’ work with the bar model and 
gain insights for enhancing our learning environment. 
Finally, we want to summarize the implications for 
practical and theoretical issues and thus contribute to a 
theoretical framework for conceptual understanding for 
using the bar model in the teaching and learning of 
algebra. 

THEORETICAL BACKGROUND 

Basic Considerations & Different Approaches for 
Solving Equations 

Solving equations is central in elementary algebra 
and beyond (e.g., Weinberg et al., 2016). Besides purely 
procedural perspectives, the transformation steps 
involved when solving equations can also be supported 
by conceptual considerations related to the equivalence 
of equations. Therefore, the balance model is widely 
used (e.g., Arcavi et al., 2016; Vlassis, 2002). Here, the 
two parts of each side of the equation sign are considered 
‘equal’ because the analog two parts of a scale are in 
equilibrium. Equations remain equivalent when a 
bijective function is used on both sides. Combined with 
that mode, students learn to follow the ‘balance rules’ 
(“do the same thing on both sides”). For example, one 
might add or subtract the same number/expression on 
both sides or multiply or divide both sides by the same 
number/expression (however, with attention to 
dividing by zero or the variable) because the scale must 
remain balanced. A conceptual understanding of the 
basic operations is needed to make the balance model a 
helpful metaphor for learning to solve algebraic 
equations. However, Vlassis (2002) showed that this 
model also comes with a bundle of obstacles. For 
example, students focus on parts of expressions instead 
of the whole expressions of the two sides, and the minus 
sign is not seen in combination with the following 
expression. In particular, students overgeneralize 
subtraction as the operation to find the unknown (Filloy 

& Rojano, 1989). An alternative approach to the balance 
model, in combination with the balance rules, is the 
approach of basic transformations. Here, the idea of 
‘putting an element on the other side of the equal sign by 
doing the opposite’ plays a central role. Again, this 
procedure leads to equivalent equations (e.g., if A plus B 
equals C, one might subtract A from C to have B: 𝐴 + 𝐵 =

𝐶 ⇔ 𝐶 − 𝐴 = 𝐵; analog for multiplication: 𝐴 ⋅ 𝐵 = 𝐶 ⇔
𝐶: 𝐴 = 𝐵). Malle (1993) and Selter et al. (2012) favor this 
approach when introducing equations due to its 
closeness to learners’ intuitive arithmetic thinking. In 
addition, empirical studies have shown that many 
learners think of the basic transformations even though 
they have learned the balance model approach (Kieran, 
1988). 

Since there are critical voices concerning the use of 
the balance model when learning to solve equations 
(e.g., Booth & Barbieri, 2014; Bush & Karp, 2013; Filloy & 
Rojano, 1989; Vlassis, 2002), we looked for alternative 
approaches and possible models for introducing 
equations with a feature of highlighting the idea of basic 
transformations. 

Bar Model & Corresponding Concept Elements 

Malle (1993) proposes the bar model for introducing 
the transformation of equations because learners can 
adopt previous experiences with basic operations and 
their corresponding conceptual meanings. In addition, 
this model comes with the idea of equivalent equations 
quite intuitively: Three equations belong together (are 
equivalent) if they describe the same bar model 
(Prediger & Roos, 2023). Accordingly, three equivalent 
equations can be detected (seen) in one bar model and 
thus be taken from it (see Table 1). 

The Singapore bar model (e.g., Hoven & Garelick, 
2007; Ng & Lee, 2009) works in a similar way. This model 
is used widely in Singapore’s primary schools (e.g., 
Kaur, 2019) and is discussed to support students’ 
problem-solving activities when working with 

Contribution to the literature 

• A subject matter analysis of the bar model combined with the transposing rules for transforming equations 
is presented. 

• Insights into design experiments using the bar model in German school context are given with a focus on 
semiotic processes. 

• In this way, the paper contributes to theorizing on the role of using the bar model in the German school 
context for developing conceptually based transformations of algebraic equations. 

Table 1. Bar model & corresponding equations (following ideas mentioned in Malle, 1993) 

Additive bar model Corresponding equations Multiplicative bar model Corresponding equations 

 

2 + 3 = 5 
5 − 2 = 3 
5 − 3 = 2 

 

8 ×  4 =  32 
32 ∶  4 =  8 
32 ∶  8 =  4 

 



EURASIA J Math Sci Tech Ed, 2024, 20(9), em2505 

3 / 17 

arithmetic and algebraic word problem-solving tasks 
(Baysal & Sevinc, 2022; Ng & Lee, 2005). Research gives 
first insights into its effectiveness that is all positive (for 
a review, see Kaur, 2019): the bar model as an external 
representation that supports the mathematical structure 
could affect students’ performance in mathematical 
problem-solving (Vicente et al., 2022). Students with 
difficulties in mathematics have benefitted from 
drawing the model (Morin et al., 2017). Teachers see it as 
a helpful tool (Ng & Lee, 2009) that could also serve as a 
link between arithmetic and algebra (Fan & Zhu, 2007). 
The bar model could thus support learners in 
approaching algebra through generalized arithmetic. By 
using this approach, mental models regarding the 
operations of addition, subtraction, multiplication, and 
division established in earlier years can be transferred 
into algebraic thinking.  

Furthermore, this model used as a line diagram was 
also shown to be effective for supporting the part-whole 
schema in translation processes between verbal 
problems and the symbolic representation (Wolters, 
1983). 

However, as with every representation, the bar 
model also comprises several aspects learners have to 
grasp to be able to work with it properly and understand 
the underlying mathematical concept (here: equivalent 
equations). To structure these aspects, we use the idea of 
concept elements as proposed by Drollinger-Vetter 
(2011, p. 34). This author refers to concept elements of a 

mathematical concept as those parts that must be 
understood to grasp the concept as a whole. Thus, 
several concept elements have to be understood to grasp 
the concept of equivalent equations in the bar model. We 
list corresponding concept elements for equivalent 
equations, their occurrence in the bar model, and their 
corresponding visualization in the bar model (Table 2). 

Since three different equations can be seen in one bar 
model (see Table 1), one operation and its inverse 
operation can be detected in the same bar model. For 
example, learners might detect the addition “2 + 3 = 5” 
in the respective bar model since corresponding stripes 
are placed next to each other. Then, they can change this 
interpretation by seeing “5 − 3 = 2” by making use of 
the concept element of subtraction as “taking away” of a 
line segment or “determining the difference” from one 
line segment to the other – the same counts for 
multiplication and division. This way, the connection 
between the equations based on the inverse operation is 
focused, as the inversion can be immediately seen in one 
model. However, the dynamic transformation of 
equations cannot be translated into this way of using the 
bar model. 

The importance of a profound understanding of such 
concept elements is also highlighted by Ng and Lee 
(2009). These authors worked with primary students and 
characterized the challenges they found when working 
with the bar model as being based on erroneous bar 
models and misunderstandings of single pieces of 

Table 2. Concept elements for solving equations and corresponding concept elements in the bar model 

Concept elements 
Occurrence of concept elements in the bar 

model 
Visualization of concept elements in the bar 

model 

Number Length of a stripe 
 

Addition (e.g., 2+3) Putting together 

 
Subtraction (e.g., 5-3) Taking away or determining the difference 

 
Multiplication (e.g., 3x8) Counting in units 

 
Division (e.g., 24:3) Partitive or quotative model 

 
Equality (e.g., 3x3=9) Stripes having the same length 

 
Inverse operations (e.g., 2+3=5 
& 5-3=2) 

Doing the opposite Visible in one bar model, compare 
examples above 

Equivalence Equations ‘belonging together’ as 
describing the same bar model 
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information rather than calculation mistakes. Moreover, 
Yan (2002) emphasized that this model is only helpful 
when constructed precisely enough to gain the 
important relationships, e.g., respective concept 
elements. 

Connecting Multiple Representations  

Representations play a special and unique role in 
mathematics. According to Duval (2006), they are not 
just individual interpretations of a mathematical object 
but are necessary for constructing knowledge and 
should not be confused by learners with the actual 
mathematical object. In the following, we use the concept 
of representations and its representation register (short: 
register) proposed by Duval (2006). The use of different 
representations is viewed as promising for enhancing 
understanding: “Two symbolic sign systems are used to 
illuminate each other […]” (Leinhardt et al., 1990, p. 3). 
A first approach for using several representations in 
mathematics teaching is given by Bruner’s concrete-
pictorial-abstract approach (Bruner, 1967). While this 
approach advocates a sequential introduction of 
mathematical objects first by using physical objects, then 
using drawings before going to numbers and symbols, 
the principle of connecting multiple representations goes 
even further (Bruner, 1967). Here, the regular change 
between different representations is focused together 
with an explicit naming of the connections between 
them.  

In general, one representation (e.g., “A + 2B = C”) is 
embedded in a wider register, which comprises rules for 
transformations (e.g., the algebraic-symbolic register). 
The register is important because different aspects of the 
underlying content become apparent or highlighted due 
to respective representations and possible 
transformations. In the context of different registers, 
Duval (2006) describes two different types of 
transformations: treatments and conversions: 

“Treatments [...] are transformations of 
representations that happen within the same 
register: for example, carrying out a calculation 
while remaining strictly in the same notation 

system for representing the numbers, solving an 
equation or system of equations […]” (p. 111). 

“Conversions are transformations of 
representation that consist of changing a register 
without changing the objects being denoted: for 
example, passing from the algebraic notation for 
an equation to its graphic representation, passing 
from the natural language statement of a 
relationship to its notation using letters, etc.” (p. 
112). 

For our purpose, that is, the context of elementary 
equations, we consider the following registers: symbolic-
algebraic register, symbolic-numerical register, verbal-
situative register, and the bar model (as a special kind of 
iconic representation). We give examples of elements of 
such registers, possible representations, and respective 
treatments in Table 3.  

Here, a change from the symbolic-algebraic 
representation to the respective bar model would be an 
example of a conversion. 

Both transformations (treatments and conversions) 
are of great importance when learning mathematics, but 
conversions seem to bear a unique hurdle:  

“Conversion is a representation transformation, 
which is more complex than treatment because 
any change of register first requires recognition of 
the same represented object between two 
representations whose contents have very often 
nothing in common. It is like a gap that depends 
on the starting register and the target register” 
(Duval, 2006, p. 112). 

Several studies have shown that different 
representations and conscious translations between 
respective registers support conceptual understanding 
(e.g., Duval, 2006; Moschkovich, 2013; Schnell & 
Prediger, 2014). However, the connections between the 
different representations have to be highlighted and 
made explicit (Kaput, 1989; Marshall et al., 2010).  

As becomes apparent in the quote of Duval (2006) 
above, a successful conversion is not about the pure 

Table 3. Different registers & possible treatments in the context of elementary equations 

Symbolic-algebraic Symbolic-numeric Verbal-situative Bar model 

𝐴 = 𝐵 + 𝐶  5 = 3 + 2 
 

Eva runs 5 km per week. On 
Mondays, she runs 3 km, and on 

Wednesdays, she runs 2 km.  
Examples of treatments in the registers 

𝐴 = 𝐵 + 𝐶   
⇔ 𝐴 − 𝐶 = 𝐵  
 

5 = 3 + 2 
⇔ 5 − 2 = 3 

 

Eva runs 5 km per week. On 
Mondays, she runs 3 km, and on 
Wednesdays, she runs 2 km. This 
week, she only manages to run on 
Monday. Thus, she runs 2 km less 
than in her usual week. This week, 

she only runs 3 km. 

No treatment on level of 
representation; a transformation is 

replaced by changing the 
perspective on the same bar 

model 
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(mechanic) change of representation; it is about 
connecting the representations.  

Therefore, the connections between them have to be 
explicated. In this sense, we adopt Duval’s (2006) idea 
that a successful conversion “first requires recognition of 
the same represented object between two 
representations” (see quote above).  

As this recognition is a crucial aspect for many 
learners, we go into more detail regarding this aspect of 
“recognition of the same represented object” by using 
the idea of concept elements. Hence, to perform a 
conversion (connecting two representations), one has to 
detect the corresponding concept elements in one 
representation and use them as mediators for connecting 
the representations (compare Renkl et al., 2013). We 
provide an example of such a conversion by connecting 
a representation from the bar model and the symbolic-
numerical register (see Table 4). 

Although many reasons favor introducing and using 
several representations, there are also critical voices 
regarding its use. First, every representation must be 
considered a learning content, not as self-evident or self-
explanatory (e.g., Gravemeijer, 2016).  

Second, regarding given representations by the 
teachers, Fagnant and Vlassis (2013) showed that 
students tend to guess the corresponding 
representations in a different register instead of 
constructing them based on conceptual ideas. From a 
sociocultural perspective, in particular, the idea of 
transmitting knowledge through a model given by 
instruction is criticized (see for an overview Verschaffel 
et al., 2007). Third, Verschaffel et al. (2007) highlight that 
all representations have their limits, so they can be 
considered as serving only to a certain extent. 

LEARNING ENVIRONMENT 

As alluded to in earlier sections, every representation 
must be considered a learning content that is neither self-
evident nor self-explanatory (e.g., Gravemeijer, 2016). 
Our learning environment is based on the bar model to 
promote conceptual understanding and to highlight the 
idea of equivalent equations in particular. One main 
characteristic of the environment is that the learners are 
asked to verbalize the appearance of corresponding 
concept elements and their mutual relationships 
between the two registers involved. This way of teaching 

and learning follows the principle of connecting multiple 
representations. With this principle as a basis, the 
learning environment aims to go deeper than the typical 
procedural character of transforming equations. 
Conceptual connections between single representations 
should be established based on the relevant concept 
elements (Table 2). To transform equivalent equations, 
we orientated our learning environment along the 
following five steps to systematically guide the work 
with the bar model. 

Step 1 highlights the idea of equality in real-life 
situations (e.g., weights on a scale or paying money to 
rent a car). These verbal descriptions are to be matched 
with corresponding algebraic equations. This first step 
aims to activate prior knowledge concerning the concept 
elements of the four basic operations and the concept 
element of equality in several representation registers. 

In step 2, the use of stripes (as the basic elements of 
the bar model) is introduced in the context of running 
programs. Corresponding stripes represent distances as 
can be seen Table 5. 

Here, learners should connect the stripes as iconic 
representations with the corresponding symbolic and 
contextual representations. In this sense, first 
conversions between the bar model and contextual 
situations and between the bar model and numeric-
symbolic representations are required. Accordingly, the 
following concept elements (compare Table 2) are 
focused on: the size of a number as the length of a stripe, 
addition as putting together, and multiplication as 
counting in units. In addition, two running programs 
can have the same distance in total, which is also true for 
the corresponding stripes. Hence, the concept element of 
equality is provided, too. 

In step 3, the idea of equivalence of numerical 
equations is approached by considering three numerical 
equations that belong to one bar model. Here, the 
concept element of equivalence is highlighted. The idea 
of the inverse operation is introduced and must be ‘seen’ 
in one bar model to gain the corresponding equivalent 
equations. Accordingly, the concept elements 
concerning subtraction and division are provided. 
Subsequently, the idea of equations describing one bar 
model (and vice versa) is transferred to algebraic 
equations in step 4. Step 3 and step 4 aim to identify the 
corresponding three equations in one bar model. The 

Table 4. Concept elements for connecting a bar model with the symbolic-numeric register 

Bar model 
Focused concept elements 
in the bar model 

Concept elements as mediator 
Symbolic-numeric 

representation 

 

• Length of stripes 

• Putting together 

• Equal length of stripes 

• Length of stripes interpreted as (size of) numbers 

• Putting together as addition 

• Resulting length as sum 

• Equal length as equality  

• Upper & lower part of bar model as left & right part of 
equation 

2 + 3 = 5 
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focus is on the conversions between the bar model and 
the symbolic representation. All concept elements are 
made explicit in both representations. The students are 
led to focus on those equations that belong to the same 
bar model and thus make sense of the concept of 
equivalent equations as describing the same situation. 

Finally, in step 5, equivalent algebraic equations are 
focused without considering the bar model. This final 
step provides the detachment from the bar model. The 
focus is on the use of the inverse operation. Treatments 
are considered only in the algebraic-symbolic register. 

RESEARCH QUESTIONS 

Our development research is framed by a design 
research approach (Gravemeijer & Cobb, 2006) based on 
a learning environment that was constructed with a 
strong focus on the design principle of connecting 
multiple representations. The learning environment 
focuses on working with the bar model, which has been 
shown to have a positive effect on learners' problem-
solving skills. In our context, it is used for the concept of 
equivalent equations. However, critical voices also mind 
being careful when introducing new representations. 
Therefore, we want to explore how students cope with 
the bar model to highlight the idea of equivalent 
equations. Following our aim of testing and enhancing 
the learning environment and related theoretical issues, 
we first focus on challenges that might occur when 
working with the bar model: 

(1) What challenges can be identified in students’ 
work with the bar model in our learning 
environment? 

Furthermore, we are interested in using the bar 
model to contribute to a conceptual understanding of 
(equivalent) equations. For this purpose, the bar model 
and respective transformations (conversions and 
treatments) play a central role. We thus want to have a 
deeper look into students’ work when transforming 
equations with the bar model and approach the open 

question of how far students accomplish the semiotic 
processes involved in the usage of the bar model: 

(2) How can students’ semiotic transformations 
(“conversions” and “treatments”) involving the 
bar model be characterized regarding the usage of 
the relevant concept elements during students’ 
work in our learning environment? 

Finally, the investigation of successful conversions 
aligns with identifying relevant concept elements in the 
context of the bar model. Accordingly, we are interested 
in how far the students can identify corresponding 
concept elements when working with the bar model: 

(3) To what extent are students able to identify the 
relevant concept elements when working with the 
bar model in our learning environment? 

METHODOLOGY 

The research presented in this paper is pursued in a 
design research methodology because this paradigm 
combines both the design of innovative instructional 
approaches according to defined design principles and 
the investigation of students’ work in the designed 
learning environments (Cobb & Gravemeijer, 2008; 
Gravemeijer & Prediger, 2019). Our focus lies on gaining 
deep empirical insights into students’ usage of concept 
elements while connecting multiple representations, 
thus retracing necessary refinements for the design 
principle of connecting multiple representations. 

Sample & Data Collection 

The sample comprises the work of six students from 
different schools in Germany. All of them have in 
common that the topic of transforming equations was 
part of their mathematics curriculum during their 
respective school year. The sample can be divided into 
two groups. Group (1), aged 14, worked with 
transforming equations for the first time. Group (2), aged 
18, took part in remediating courses at a vocational 
school. Group (2) was added to the sample as conceptual 

Table 5. Some examples of tasks from our learning environment (step 2) 

Task: The drawing on the right hand side shows the kilometers covered 
during each run. Write down the total distance of the run and 
substantiate this with a suitable calculation. 
Calculation:____________________ 

 
If I put .......... .......... stripes one behind the 
other and bundle them, it is same as .......... 

Task: 
- Plot Eva’s runs per week on the line below. 
- Find a suitable calculation that shows how 

many kilometers Eva runs in a week. 

 
Calculation: 

 
 
 
 
 
 

 

Eva: 

Monday 7 km 

Tuesday Break 

Wednesday 7 km 

Thursday Break 

Friday 7 km 

Saturday 2 km 

Sunday 1 km 

 

And what does it 
look like if I jog a 1 
km run and a 2 km 
run in addition to 

my three 7 km 

runs? 
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understanding of the mathematical procedures is 
particularly crucial for these students. They often have a 
background of learning procedural elements by heart for 
upcoming tests instead of developing long-lasting 
conceptual understanding. Therefore, our learning 
environment is especially considered helpful for them.  

The sessions, given in Zoom, took place from January 
to July 2021 and were organized in one-to-one sessions 
with the design experiment leader (the paper’s first 
author). The environment consisted of several tasks and 
so-called memory boxes, where the learners could 
record their most important new findings. The 
participants were asked to think aloud while working on 
the tasks. The design experiment leader observed 
students working in the learning environment during 
the sessions and asked questions to understand their 
thinking. For example, whenever students’ work 
remained unclear, she asked them to explain their 
thoughts and gave additional hints when needed. The 
data comprises a total of 960 minutes of video 
recordings. 

Data Analysis 

The video recordings of the design experiments with 
six students were considered to give insights into 
students’ conversion and treatment processes. We 
watched all the videos, identified episodes of interest for 
our investigation (conversion and treatment processes), 
and transcribed corresponding parts.  

For research question (1), we set up a qualitative 
content analysis (Mayring, 2015) to summarize and 
structure all the students’ challenges observed when 
working with the bar model in the learning 

environment. We thus came up with an inductive 
constructed set of categories (see Table 6).  

To describe the semiotic processes (research question 
(2)), we used the transcripts to follow up on how 
students succeeded in completing the transformations. 
In the first step, we categorized the concept elements (see 
Table 2) used by the students within the processes. Here, 
we interpreted the corresponding linguistic utterances of 
the learners as occurrences (or omissions) of concept 
elements. In the second step, we looked for indications in 
the transcripts of how students succeeded in using the 
concept elements as mediators in the different 
representations. In the third step, we constructed a table 
to make the underlying processes visible. Therefore, we 
put the corresponding excerpts from the transcript in the 
first column. In the second column, we list the focused 
concept elements belonging to the first representation 
apparent in this excerpt. The third column is about the 
possible use of these elements as mediators between 
representations one and two. This second representation 
is given in the last column of the table.  

If we could not detect any explicated usage of the 
concept elements as mediators, we tried to describe 
students’ strategies for performing the change of 
representation. We summarized the different strategies 
in the course of a qualitative content analysis and thus 
came up with an inductive set of categories. 

We analyzed students’ explanations of their work to 
investigate the treatments involved. We cite episodes 
from the transcripts, summarize the approach observed, 
and state our interpretation of the episode.  

To answer research question (3), we looked at the 
parts of the videos and transcripts, where students were 
working with the bar model. Based on the students’ 

Table 6. Categories summarizing students’ challenges when working in our learning environment using the bar model 

# Name of category Explanation Illustration (taken from students’ work) 

Challenges concerning the usage of the bar model 

1 Failure to recognize 
corresponding mathematical 
operations in the bar model 

Students do not recognize 
mathematical operations 

represented in the bar model. 

Compare examples discussed below 

2 Focus on irrelevant aspects 
in the bar model 

Students focus on irrelevant 
aspects of the bar model (e.g., 

what is at top & bottom). 

I'm not quite sure myself how I did it, but I copied it 
from the other drawings and just did the longer line at 

the bottom. And above just shorter lines. 

Challenges resulting from the use of the bar model 

3 Strategy of “solving for 
variable x” is not developed 

In the context of “equations 
that belong to one bar model” 

learners do not develop 
strategy of solving for the 

variable, they are looking for. 

And would not that be easier then to somehow take the 
equation directly? [Interviewer marks equation 35: 5 =

 𝑓] ...  
I do not think so. I find easier, if the- if the 𝑓 is in it in 

the, yes how should we say this, within the calculation 
[points to “35 = 5 ⋅ 𝑓”] and not as a result is there. 

4 Overgeneralization “only 
positive numbers” 

Working with the bar model 
results in only positive values 
being considered as outcomes. 
This impacts the assignment of 
variables & selection & order 

of operations used. 

How do you know that we always did it that way? That 
we subtracted two from eight?  

Because otherwise you get a minus number [...]. That 
one looks at beginning, what largest number is and then 
subtracts small numbers from the large number … only 

natural numbers as results. 
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utterances, we coded evolving concept elements as 
identified respectively focused by the student based on 
the descriptions in Table 2. For example, Vivien explains 
how she arrived at the equation “4 × 8 = 32” using the 
bar model: “that’s ... eight fours, and then just eight times 
four is 32”. Here, we have coded the concept element of 
multiplication (as counting in units) as identified by 
Vivien. Critical cases were discussed between the 
authors until intercoder agreement was achieved in the 
sense of consensual validation (Flick, 2007). 

RESULTS 

This section will first list the results concerning the 
overarching challenges we found when students worked 
in the learning environment. Subsequently, individual 
students are discussed with emblematic examples of 
conversions and treatments. To this end, relevant 
excerpts from the transcripts are given and analyzed, 
focusing on respective transformations. Finally, the 
results presented in this section will be used to answer 
our research questions. 

Results Concerning Arising Challenges When 
Working With the Bar Model 

The qualitative content analysis led to the 
categorization of the four challenges listed in Table 6. By 
following our inductive approach, we came up with two 
meta-categories for structuring the four subcategories: 
challenges concerning the usage of the bar model and 
challenges resulting from the use of the bar model. 

In category 1, we summarized students’ difficulties 
recognizing corresponding mathematical operations in 
the bar model. We will discuss several examples of this 
phenomenon below. Category 2 comprises students’ 
challenges when focusing on irrelevant aspects in the bar 
model and thus failing to recognize essential (concept) 
elements for working with the given task. Such 
irrelevant aspects include the bars’ order (what is written 
on the upper bar and the lower bar), and the concrete 
bars’ length when using variables. When being asked to 
work with the bar model, such challenges prevent a 
viable approach to work with the bar model.  

Moreover, we found challenges resulting from the 
use of the bar. Working with the bar model in the present 
form of the learning environment did not lead to the 

strategy of “solving for the variable x” (category 3). 
Finally, exposure to the bar model led learners to 
implicitly believe that only positive values occur 
(category 4). 

Thus, challenges concerning the usage of the bar 
model directly concern the work with the model, 
whereas challenges resulting from the use of the bar 
model concern rather the process of solving equations 
per se. 

Results Concerning Conversions 

This subsection presents the analysis of three cases of 
conversions that we found paradigmatic in our sample. 

Case Anno: Intended conversion: Bar model–Symbolic-
numerical representation 

Anno is 14 years old, attending the 8th grade of a 
comprehensive school, and can be classified as an 
average student based on his grades. The episode shown 
below is part of the second session with Anno and 
belongs to step 3 of the learning environment. Anno is 
asked to set up the corresponding three equations on the 
symbolic level, starting from the given bar model. The 
task and Anno’s solution are shown in Figure 1. 

After Anno has written the three equations, the 
following episode takes place: 

I:  Can you explain to me, where you see the first 
equation in the drawing, this three times eight 
equals 24? 

A:  Yes, this ehm so 24 is this long line here [...] 
And these here are three 8s lines, like three 
wooden parts that one has put together or have 
the same length as the 24. 

I : Yes. Great. And this second equation, that 
with the division, do you see that somewhere in 
the drawing as well? 

A: If I have a lot of such small 8s things here and 
would put them into the 24, just like one, so 1, 2, 
and 3, I would just eh calculate, that I would also–
come to eight […] that you see here, if you 
lengthen the lines here, you also get three times, 
therefore three parts. 

Our analysis of the episode led to the results 
summarized in Table 7.  

In this episode, Anno focuses on different concept 
elements in the bar model, listed in the second column 
of Table 7. His reports on these elements fit the 
equations he mentions in the symbolic-numeric 
representation. In our interpretation, Anno uses these 
concept elements as mediators to link both 
representations meaningfully, even though he does not 

 
Figure 1. Anno’s task & solution (Source: Screenshot from 
the video session) 
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mention the links explicitly in every case (not explicitly 
mentioned: written in grey in Table 7).  

According to our interpretation, Anno succeeds in 
connecting representations via the following concepts 
elements: connecting the length of the stripes with the 
size of the numbers, interpreting “putting together” as 
addition, and connected with that, “repeated addition 
and counting in units” as multiplication, “putting 
smaller stripes into a longer one,” and “counting these 
units” as division.  

Anno’s conversion process from the bar model to the 
symbolic-numerical representation is based on his 
identification of concept elements in the bar model. He 
is able to use these concept elements as mediators to 
construct the corresponding symbolic-numerical 
representation and thus accomplishes the conversion.  

Case Frank (1): Intended conversion: Bar model–
Symbolic-numerical representation 

Frank is an 18-year-old student at a prevocational 
school. The episode below is part of the second session 
with Frank and stems from the beginning of step 2 of the 
learning environment. Here, Frank is asked about the 
connection between the symbolic representation of the 
equations and the corresponding bar model (see Figure 

2). While the equations on the right side can be 
interpreted as results of treatments, the learners should 
justify them by a conversion involving the bar model. All 
three equations can be seen in the given bar model. 

In this context, the following dialogue takes place 
between Frank and the interviewer: 

F:  Yes, two and three equals five [...] so that was 
the drawing, and then as a calculation, yes, two 
plus three equals five. Then you always had to 
make the number, uh, a task, where the number[s] 
are the result again. For example, just again five 
minus three is equal to two, the two has also been 
displayed. Five minus two is, yes, the three, the 
three is also there and with two plus three is, yes, 
also the five is shown there, therefore. 

I: And did the picture help there in any way, or 
what did the picture do in the process?  

I understand the calculation. But what does the 
picture do in the process? 

F: Uh, the picture shows then, which numbers 
you can or must use, in this sense […] You have to 
use the two, the three and the five to write the ... 
when you write the calculation. 

I: And do you see this operator there as well, so 
does this plus or minus, can you see that there 
somehow in the, in the drawing as well? 

F: No, you cannot ... so I would say, so ... I do not 
know what others would see, so I would not see 
any plus or minus there now. Because this, this 
line between, at the two and the three can yes–uh 
is simply the, the ratio of the two and the three or 
how you would represent it. 

We analyze this episode, as follows (see Table 8): 

Frank does not identify meaningful (concept) 
elements in the bar model. When asked about the 
operations displayed, he could not name the respective 
elements in the bar model. (Here, the interpretation is 
possible that Frank tries to interpret the short vertical 
line between the “2” and “3” in the bar model in 
combination with the horizontal line as some kind of 
“+”-sign (compare episode below), but he does not 
follow this interpretation.) Frank does not identify the 
mathematical operations in the bar model and thus does 
not mention any corresponding concept element like 
“putting together” or “placing pieces one behind the 

Table 7. Analysis of conversion performed by Anno 

Anno’s description of the bar 
model 

Focused concept 
elements in bar model 

Mediating concept elements 
Symbolic-numerical 

representation 

Yes, this ehm so 24 is this long line 
here [...]. And these here are three 
8s lines, like three wooden parts 
that one has put together or in end 
have same length as 24. 

• Length of stripes 

• Putting together 

• Equal length of 
stripes 

• Length of stripes interpreted as size of 
numbers 

• Putting together as addition 

• Repeated addition & counting in units 
as multiplication 

• Resulting length as sum 

• Equal length as equality 

3 × 8 = 24 

If I have a lot of such small 8s 
things here & would put them 
into 24, just like 1, so 1, 2, 3, I 
would just eh calculate, that I 
would also–come to eight. 

• Put smaller stripes 
into a longer one 

• Count number of 
smaller stripes used 

• Put smaller stripes into a longer one 
as “fitting in”/quotative model of 
division 

 

24: 8 = 3 

 

 
Figure 2. Frank’s bar model & corresponding equations 
(Source: Excerpt from the learning environment) 
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other”. In addition to the pure numbers displayed, he 
also mentions the aspect of ratio, which can lead to 
difficulties in the future, especially when dealing with 
variables. Since he does not identify significant concept 
elements in the bar model, he uses an evasion strategy 
for performing the conversion: He only focuses on the 
numbers displayed in the bar model to pass to the 
symbolic-numerical representation. Frank changes their 
order to gain different equations and uses corresponding 
operations to get the result. 

Case Frank (2): Intended conversion: Verbal-situative–
Bar model 

We cite another episode with Frank to highlight his 
difficulties in recognizing concept elements concerning 
mathematical operations in the bar model (Table 9). 
Frank has to choose the bar model fitting the following 
description of “Eva’s run” in this task: 

“Eva runs seven km three times a week. Max runs 
three km every day from his parents’ to his 
grandparent’s house. Andi runs 13 km on 
Tuesdays and seven km on Thursdays.” 

The corresponding bar model is shown in Figure 3 
(bottom of Figure 3). However, Frank chooses the wrong 
bar model (upper solution in Figure 3) and explains his 
choice as follows: 

F:  Eva runs three times, the three is there, and 
seven km is also another seven, it’s also there. So 
that’s just three times seven. 

I: And could you explain, where you see the 
“times” in the drawing? 

F: I just say it. With me it’s like that, I just say it, 
three times seven, this is a habit for me, that I say 
it like that. So, I see there no “times” directly, that 
could also be a plus, that could also be just, if I do 
not see the text, it could also be plus […]. 

F: Because it looks like plus simply because it’s 
not ... with the others uh several times the 
numbers or it is just completely different there. It 
just looks like this, because three and seven also 
results in, could also result in 10. And this 
[referring to the context], if I did not have this in 
my mind, this three times a week seven km run, 

Table 8. Analysis of conversion performed by Frank 

Frank’s description of the bar model 
Focused (concept) elements 

in bar model 
Mediating concept elements 

Symbolic-numerical 
representation 

Yes, 2 and 3 equals 5 [...] so that was 
the drawing, and then as a 
calculation, yes, 2 plus 3 equals 5. 

• Numbers written on the 
stripes 

 

 2 + 3 = 5 

Then you always had to make the 
number, uh, a task, where the 
number[s] are the result again. For 
example, just again 5 minus 3 is equal 
to 2, the 2 has also been displayed. 
[...] Uh, the picture shows then, which 
numbers you can or must use, in this 
sense […]. Because this, this line 
between, at 2 and 3 can yes- uh is 
simply the, the ratio of 2 and 3 or how 
you would represent it. 

• Numbers written on the 
stripes 

 
 
 
 
 

• Ratio of the two segments 
on the upper stripe 

 5 − 3 = 2 

5 − 2 = 3 

 

 

Table 9. Analysis of conversion performed by Frank (episode 2) 

Frank’s description Focused (concept) elements Mediating concept elements Bar model 

Eva runs 3 times, 3 is there, and 7 km 
is also another 7, it’s also there. So 
that’s just 3 times 7 […]. So, I see 
there no “times” directly, that could 
also be a plus, that could also be just, 
if I do not see the text, it could also be 
plus. 

• Numbers given in 
situation  

• Focus on iconic similarities 
to “plus” or “times” sign 
(?) 

 

 

 

 

 

 

 
Figure 3. Two different bar models that might fit “Eva’s 
run” (Source: Excerpt from the learning environment) 

“Strategy”: 
Take numbers 
from the picture 
and make tasks 
with them. 
Every number 
should serve as 
a result once. 

“Strategy”: Looking for the same 
numbers in both representations 
to find the match. 
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then I would know, then I would not know it 
either, like this. This text is simply this three times, 
so three times seven km running in the week. 

Again, Frank focuses on the numbers used in the text 
and the numbers in the bar model. When asked about 
the “times” in the drawing, it is unclear in his response 
if he is talking about the meaning of times as an 
operation or about the sign (“×”). Frank does not 
identify any concept element in the bar model in this 
episode. Here, another evasive strategy for performing 
conversion becomes apparent: looking for the same 
numbers in both representations. 

Results Concerning Treatments 

Case Tessi: Treatment in the algebraic-symbolic 
register 

Tessi is 14 years old and has good grades at 
secondary school (8th grade). The following episode is 
part of the second session with her and is located at step 
5 of the learning environment. A learner can only solve 
the task shown in Figure 4, after a detachment from the 
bar model has taken place. 

After Tessi states corresponding equations (
𝑎

𝑟
= 𝑏,

𝑎

𝑏
=

𝑟), she explains her finding of the solution as follows: 

(lines 1-6) T: Amount divided by rate is the base 
and amount divided by base is the rate. But I 
really have no idea, as I said, but that’s how I 
could imagine it, according to the scheme we’ve 
done so far [referring to the tasks working with 
the bar model]. 

(lines 7-9) I: Yes, that’s definitely correct [referring 
to the three equations]. But can you explain to me 
how you came up with it? 

(lines 10-15) T: We have the full length of this 
amount and then so and so often the percentage, 
what is given by the number of the base. So for 
example 10 times as much, so 10 times this 
percentage and this 10 would then be the base, so, 
or, yes.  

(lines 16-22) […] We still have these three 
components, which we need, and that’s why we 
have to divide this one, this really high amount, 
which is probably the highest number, by one of 

the smaller ones to get another one and then the 
other way around, so divide by the one to get the 
other one. 

In this case, we do not include a table for analysis 
since we do not want to examine a conversion but rather 
describe the treatment undertaken. 

Even though this episode occurs after the (desired) 
detachment process from the bar model, it demonstrates 
a strong connection to previous work with the model. 
When explaining her way of finding the equations, Tessi 
explicitly refers to the bar model: She identifies the 
amount with the “full length” which is equal to “base 
times rate” (line 10 - 15). For gaining the other two 
equations, she uses the strategy of dividing the highest 
number by a smaller one (line 16 - 21). Thus, she gets two 
more equations. In this episode, ideas resulting from the 
bar model help Tessi to find the equivalent equations. 
However, her strategy bears some hindrances. For 
example, the idea of having the highest number that is 
equal to the product of two smaller numbers is limited 
to cases with factors bigger than 1. 

Results Concerning Concept Elements Identified by 
Students 

We give an overview of all concept elements 
identified by the students in our study in Table 10. 

All students identified at least some concept elements 
concerning basic operations in the context of the bar 
model. However, grasping (the concept element of) 
division in the bar model (partitive or quotative model) 
seems delicate. The gaps in Table 10 indicate that no 
student elaborated on every concept when explaining 
his/her solution. Furthermore, we could not code a 
concept element concerning “inverse operation” as 
identified since students seemed to rely heavily on the 
numerical or algebraic equations when explaining the 
phenomenon of ‘belonging together’. At no point did the 
students explain this phenomenon with respect to the 
bar model. As these concept elements are missing in 
every case, we could not identify the overarching 
concept of equivalence. 

SUMMARY & DISCUSSION 

Answering research question (1) (“What challenges 
can be identified in students’ work with the bar model in 
our learning environment?”): 

 
Figure 4. “Tessi’s” task (Source: Excerpt from the learning environment) 
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Using a qualitative content analysis, we came up with 
two meta-categories of challenges:  

(i) challenges concerning the usage of the bar model 
and  

(ii) challenges resulting from the use of the bar model.  

For the first meta-category, we noticed students’ failure 
to recognize corresponding mathematical operations in 
the bar model and their focus on irrelevant aspects in the 
bar model. These aspects were surprising for us and are 
discussed in more detail in the context of research 
question 2. The difficulties resulting from the use of the 
bar model are categorized in the second meta-category. 
Here, we categorized the phenomenon that the strategy 
of solving for the variable x is not developed, and we 
found some overgeneralizations summarized with the 
heading “only positive numbers”. For example, using 
stripes (with positive length) fostered 
overgeneralizations about what numbers the variables 
stand for and the selection and order of operations used. 
As every representation has its limits and can only serve 
to a certain extent (e.g., Verschaffel et al., 2007), the 
difficulties we found can be seen as characteristic of the 
work with the bar model similar to the hindrances 
Vlassis (2002) highlighted for the case of the balance 
model. 

Answering research question (2) (“How can students’ 
transformations (“conversions” and “treatments”) 
involving the bar model be characterized during 
students’ work in our learning environment?”): 

Concerning the transformation of conversion, we 
found several students performing a successful 
conversion in the sense of Duval (2006). We showed an 
example, where the student Anno succeeded in focusing 
on the necessary concept elements in the bar model, thus 
connecting this representation with the corresponding 
one in the symbolic-numerical register. However, we 
also saw students who did not complete such 

conversions by connecting the representations involved 
but using evasive strategies like “just take the numbers 
from the picture and construct tasks with them” or “look 
for the same numbers in both representations to find the 
match”. Again, the mere occurrence of evasive strategies 
is not surprising. Related phenomena are already known 
in other areas of elementary algebra (e.g., Prediger, 
2008). Here, the question arises: what prevents a 
successful conversion? As explained above, we consider 
a successful conversion as the connection of 
corresponding representations. For this to happen, the 
concept elements in the representations must be 
captured and used as mediators between the 
representations involved. 

In this case, the bar model can be seen from two 
perspectives: On the one hand, it is a learning objective 
in itself, as the meaning of its single elements has to be 
understood to see them in the light of the necessary 
concept elements. On the other hand, the bar model 
serves as a tool for uncovering existing gaps regarding 
essential concept elements (see also Ng & Lee, 2005). In 
particular, concept elements related to mathematical 
operations (addition, subtraction, multiplication, and 
division) may not have been sufficiently internalized. 
Thus, significant gaps in students' pre-knowledge might 
exist, hindering them from learning new mathematical 
concepts. Therefore, using the bar model could give 
important hints regarding essential foundations of 
understanding that require consolidation before moving 
forward with additional content.  

As an example of treatment in the algebraic-symbolic 
register, we discussed the work of Tessi. This student 
performs the treatment by referring to ideas taken from 
the bar model. She identifies the product of the 
multiplication with the length of the longest stripe and 
the two factors with the smaller stripes. She uses the 
strategy of dividing the highest number by a smaller one 

Table 10. Summary of concept elements identified by learners (“CE”: Concept element & “c”: Concept) 

#  Costas Tim Vivien* Frank Anno Tessi 

Basic interpretations 

CE 1 Size of numbers as length of lines X X  X X  
CE 2 Equality as having same length X X X X X X 

Basic operations 

CE 3 Addition as putting together X X (X) X  X 
CE 4 Subtraction as taking away or determining the difference X  (X)  X  
CE 5 Multiplication as counting in units or repeated addition X X X X X X 
CE 6 Division as partitive or quotative model    X X X 

Idea of inverse operation 

CE 7a Inverse operation–Doing the opposite (addition vs. subtraction)       
CE 7b Inverse operation–Doing the opposite (multiplication vs. division)       

Concept of equivalent equations 

c Equivalence–Belonging to one bar model       

Note. *In one episode, Vivien gives a somewhat incoherent explanation of her solution (“line below ... 7 cm maybe … and 
above 4 cm cut off and 3 cm sticked or something like this”); even though Vivien does not show any identification of 
addition and subtraction in the context of the bar model in other episodes, this episode seems to highlight some basic ideas 
about corresponding concept elements, and accordingly, we marked corresponding cells with "(X)". 
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to gain the other two equations. As known from 
previous research, the transition from natural numbers 
to rational numbers comes with distinct obstacles, e.g., 
the idea that ‘multiplication makes bigger’ cannot be 
transferred from natural numbers to rational numbers 
(e.g., Prediger, 2008). As with the balance model, the bar 
model also seems to bear its obstacles and challenges 
that must be considered when working with it. 

Answering research question (3) (“To what extent are 
students able to identify the relevant concept elements 
when working with the bar model in our learning 
environment?”): 

As highlighted in the sections above, students 
identified corresponding concept elements in the bar 
model differently. Nearly all students seemed to grasp 
the concept elements of basic interpretations in the bar 
model (interpretation of length of lines as numbers and 
equal length of lines as equality). However, the 
interpretation of division in the bar model as partitive or 
quotative model is more delicate. Moreover, we could 
not detect concept elements concerning the inverse 
operation in the bar model, i.e., the students failed to 
grasp the concept of equivalent equations as a whole. 
They focused rather on the single steps of transforming 
(like adding, subtracting, …) than their combination. The 
phenomenon of not identifying concept elements can be 
due to not existing pre-knowledge concerning those 
concept elements or to the unknown representation of 
the bar model itself. However, how learners identified 
concept elements seems to correspond to a progression 
concerning concept elements in the bar model (see 
Figure 5). 

In discussing our research, we must highlight the 
characteristics and limitations: First, our experiments 
took place during Zoom sessions. Although the students 
were more or less used to them due to the pandemic, it 
brought some challenges: Although we believe that 

implementing the bar model in a virtual environment 
did not influence the emergence of the categories of 
challenges summarized in Table 6, a face-to-face 
conversation about them might have been beneficial. For 
example, gestures regarding the differentiation of the 
single operations could be easier to grasp in a face-to-
face situation. Second, in considering the different ways 
students made conversions, we neither distinguished 
between the directions in which conversions occurred 
nor did we focus on the epistemic role of language as 
done, for example, in Uribe and Prediger (2021). Post 
and Prediger (2022) characterize four semiotic processes 
in dealing with multiple representations according to 
their degree of integration of representations. Following 
these authors, "explaining connections between 
representations explicitly by naming the correspondance 
of elements (and enventually justifying the 
correspondence)" (Post & Prediger, 2022, p. 101) is 
considered to be the highest degree of integration of 
representations. Considering that our analysis was 
based on students’ explanations of such connections, it 
becomes clear that our approach posed high demands on 
the learners. Third, our analysis is based on the verbal 
articulations of the learners. Nevertheless, we are aware 
that the actual thinking of the learners could differ. 

Based on these results, we can discuss the supposed 
benefits of the bar model. The bar model is highlighted 
as a valuable tool for teaching and learning mathematics 
at different ages (e.g., Kaur, 2019; Koleza, 2015; Ng & 
Lee, 2009). However, we detected several challenges 
when working with the bar model in the context of 
transforming equations with students in grade 8 or even 
higher in prevocational settings. Hence, the bar model 
for the learning of transforming equations is, on the one 
hand, a learning object per se. As with the balance 
model, the bar model also comes with specific obstacles 
and possible overgeneralizations within its detachment 
process. On the other hand, it is a promising tool to 

 
Figure 5. Hierarchy of concept elements (Source: Authors’ own elaboration) 
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support conceptual understanding. It provides a way to 
make sense of transforming equations and the concept of 
equivalent equations. In addition, such challenges in 
dealing with a representation respectively several 
representations are not surprising (Goldin & Shteingold, 
2001; Knuth, 2000). It becomes clear that such (new) 
representations need to be carefully introduced while 
negotiating their meaning (Duval, 2006).  

These insights point to possible enhancements of our 
learning environment and theoretical implications. We 
will summarize these aspects in the following section. 

CONCLUSIONS 

We summarize implications for a local theory 
concerning learning about equivalent equations with the 
bar model and practical implications for our learning 
environment. 

When working with the bar model, a profound 
understanding of basic mathematical operations has to 
be considered essential. This understanding is not only 
necessary for performing respective operations when 
solving equations in arithmetical or algebraic contexts; 
learners need to have a proper conceptual 
understanding to understand which operations are 
represented in the bar model or perform operations in 
the bar model themselves. In this sense, the bar model 
must first be seen as a learning object in its own right 
before it can aid learning. Accordingly, this model is 
neither self-evident nor self-explanatory, as learners 
need specific knowledge to work with it. However, the 
bar model can also be seen as a tool to make the missing 
conceptual understanding for transforming equations 
visible and serve as a starting point for developing it. In 
our investigation, we have elaborated on the various 
concept elements that constitute the concept of 
equivalent equation in the context of the bar model. This 
nuanced analysis seems helpful in guiding the teaching-
learning processes and diagnosis. In this respect, 
highlighting the challenges we conceptualized also 
seems significant. Moreover, we have provided the first 
approaches for describing successful conversion in 
algebra when working with the bar model. In addition, 
some evasive strategies became visible. Most 
specifically, we see far-reaching possibilities for further 
research on this topic. 

To sum it up, the bar model has to be introduced 
carefully. Concerning the practical implications, we 
constructed an introduction part, where the learners get 
to know the bar model and respective basic concept 
elements (basic interpretations, basic operations see 
Figure 5). In that section, we also included tasks, where 
learners could repeat or learn about the basic meaning of 
the basic operations involved (“addition as putting 
together” and so on), as these interpretations represent 
indisputable pre-knowledge for working with the bar 
model. Concerning the conversions involved in the 

learning environment, we systematized the possible 
combinations and directions between the semiotic 
registers involved and included respective 
combinations. In addition, we included scaffolds (e.g., 
language patterns) to provide additional help with the 
conversions to be done deliberately. As we have seen 
above, grasping the idea of division in the bar model 
(partitive or quotative model) bears some hurdles for our 
learners. Thus, we included additional tasks to spend 
more time on this operation and its meaning and 
appearance in the bar model.  

Another obstacle learners faced was that the strategy 
“solving for the variable x” was not developed in the 
learning environment. This could be a consequence of 
the fact that with the basic transformation rules no 
treatment in the bar model is possible; thus, students 
could not solve for the variable x in this register. 
Therefore, we changed our approach and applied the so-
called balance rules (“doing the same on both sides”) to 
the bar model. Accordingly, the bar model is no longer a 
‘static’ representation; the same operations can now be 
performed on both sides (lengthening the lines, 
shortening, multiplying, ...) as long as the two lines 
remain the same length. In this way, we can also perform 
treatments in the bar model and thus directly correspond 
the transformations of the bar models to the procedure 
for solving equations in the symbolic register (compare 
Tondorf & Prediger, 2022 for the case of expressions). 
The idea of equivalent equations describing the same bar 
model is thus shifted to the idea that equivalent 
transformations leave the stripes with the same length 
(however, with a possible change of this length).  

Finally, the detachment process and possible 
overgeneralizations had to be tackled. Therefore, we 
included tasks that prepare or accompany the 
detachment from the bar model. We have also included 
tasks (e.g., including negative numbers) designed to 
counteract the overgeneralizations that have been 
highlighted above. This way, we integrated tasks, where 
the bar model is a helpful tool and others, where the bar 
model cannot be applied anymore (see also Ho & 
Lowrie, 2014). In line with design research, we will start 
a new cycle of testing and investigating our learning 
environment after revising it to expand our findings for 
theory and practice. 
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