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ABSTRACT 
Mathematical representations are an essential tool in the study of mathematics and 
problem solving. They are also used in word problems to facilitate the transformation 
from textual to symbolic information. We proposed a stepwise, blocked, structured 
state transition graph (STG) based on the principles of instructional message design. In 
this study, we adopted a posttest-only non-equivalent group design to compare the 
performance of students who used either STG or matrix-like tables to learn to solve 
word problems via transition matrices. We also took into account the student’s 
previous learning achievements in mathematics. The participants included four classes 
of senior students in a vocational high school, with two classes randomly designated 
as the experiment (STG) group and two designated as the control (Table) group. High-
achieving students taught using STG outperformed their counterparts who were taught 
using matrix-like tables. The performance of low-achieving students appeared to be 
unaffected by the instructional method. These findings suggest that STG provides a 
clear representation of the relationships used in matrix calculation, which makes it 
easier to select and organize information. Nonetheless, alternative methods will be 
required to improve the performance of low-achieving students. 

Keywords: instructional message design, representation, state transition graph, 
transition matrix 

 

INTRODUCTION 
K-12 students must learn to apply mathematical skills when solving everyday problems (Common Core State 
Standards Initiative, 2010; Mullis & Martin, 2013; OECD, 2016). Thus, word problems (representing everyday 
situations) are crucial to learning mathematics. Most word problems do not include superfluous or missing data; 
i.e., both the questions and answers are well defined. Nonetheless, even a simplified and direct description of reality 
can cause considerable difficulties for students (Bernardo, 1999; Jupri & Drijvers, 2016). 

The complexities involved of solving word problems were detailed by Pólya (1945). This process can be broken 
down as follows: understand the problem, devise a plan, carry out the plan, and review the work. Understanding 
the problem is the most important step. Translating natural language into mathematical language is the principal 
difficulty (Cummins, Kintsch, Reusser, & Weimer, 1988; Sepeng & Sigola, 2013). Differences in semantic structure 
can be beguiling, particularly for students at lower grade levels (de Corte, Verschaffel, & de Win, 1985; Pavlin-
Bernadrić, Vlahović-Štetić, & Arambašić, 2008; Riley, Greeno, & Heller, 1983). Students must also be able to identify 
the type of problem based on the information given to them (Lewis, 1989; Llinares & Roig, 2006). Due to their prior 
knowledge and learning topics they have already covered, students can often correspond the current problem with 
a previous solving pattern, leading them to find an appropriate solving strategy. Students must organize the 
information they use to derive patterns or devise a plan. Representations can be used to support mathematical 
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reasoning and facilitate communications on mathematical topics (Kilpatrick, Swafford, & Findell, 2001). They are 
particularly effective in helping students to comprehend mathematical problems and learn new mathematical 
concepts. 

The skills used in semantic translation can be applied to solving word problems in new situations. Cognitive 
load theory (Sweller, Ayres, & Kalyuga, 2011) posits that the presentation of instructional messages can help 
students to select, organize, and integrate information. This is particularly true in the use of multimedia to teach 
mathematics. For example, when solving a probability problem using a transition matrix; each element in the matrix 
describes the probability of moving from state to state in a one-time step. Matrix expressions impose complex 
operations, and they require a precise understanding of textual descriptions and an ability to encode those 
descriptions in the matrix. Most mathematics textbooks provide examples of working through transition matrices 
involving long textual descriptions and complex messages. Students are taught to compile information into matrix-
like tables and then intuitively convert them into matrices for processing. Tables are a form of representation that 
allows for the display of textual information within a clear, systematic arrangement. Nevertheless, this requires 
that students possess the ability to alternate between rows and columns in order to interpret and integrate 
information for new situations. Students with extensive prior knowledge can keep pace with complex issues; 
however, students lacking prior knowledge are hindered by the need to select and organize information. The heavy 
cognitive load that this imposes makes it difficult for students comprehend the connotations of transition matrices. 

The state transition graph (STG) is a graphical representation used to depict transition relationships using nodes 
and links. It is commonly used mathematical-based graphic in biology, engineering, computer science, and 
communications (Pretorius, 2008). Based on the principle of continuity (Ware, 2013, p. 183), STGs use connecting 
lines to identify sources and destinations, thereby augmenting the observation of the relationships between nodes. 
This makes it easier for students to extract essential information from the graphs and compare it with information 
from text, thereby freeing up cognitive resources for the integration of concepts represented in the transition 
matrices. Repeated analysis of relationships in each situation can induce the elaboration and automation of 
schemas, thereby enhancing learning efficiency. The spatial integration of textual and pictorial information 
(Sweller, 1994; Sweller, Chandler, Tierney, & Cooper, 1990) in conjunction with attention cueing (de Koning, 
Tabbers, Rikers, & Paas, 2010; Jamet, Gavota, & Quaireau, 2008) can enhance learning performance by reducing the 
need to conduct visual searches, particularly when using multimedia. In other words, cognitive and perceptual 
aspects must both be taken into account in instructional design.  

The transition matrix plays an important role in advanced mathematics. Translating between textual 
descriptions and matrix expressions is difficult for many students. Our objective in this study was to identify 
mathematical representations that could be used to assist students in mastering transition matrices. Students were 
divided into groups depending on their previous achievements in mathematics. We hypothesize that using STG 
could help students select and organize pertinent information from textual descriptions. We also hypothesize that 
STG could guide students in integrating this information with prior knowledge. 

LITERATURE REVIEW 
This section provides an overview of the mathematical representations commonly used for solving word 

problems. We also present guidelines for the design of visual information contained in instructional messages given 
to students. Translating textual information to mathematical representation is a complicated process; well-designed 
instructional materials make the process more comprehensible to the learner. 

Mathematical Representations in Word Problems 
Real-world situations, manipulative aids, figures, and spoken and written symbols are five common 

representations typically found in mathematics learning and problem solving (Lesh, Post, & Behr, 1987). In 
multimedia learning environments, instructors use text, diagrams, equations, tables, graphs, sound, video, 
animations, and dynamic simulations to convey ideas. Illustrating the same idea using different representations 

Contribution of this paper to the literature 

• This paper presents a stepwise, blocked, structured approach to multimedia instructional messages that 
promote learning. 

• This paper outlines the usage of state transition graph to help students in the selection, organization, and 
integration of important information from textual descriptions. 

• Most existing textbooks encourage students to transfer information into tables and then intuitively convert 
it into matrices for processing. We argue that state transition graphs are superior to tables in resolving 
transition matrix problems, particularly among high-achieving students. 
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enables the interpretation of problems from various perspectives. Ainsworth (1999, 2006) recommended the use of 
multiple representations to provide complementary information, constrain possible (mis)interpretations, and 
enable deeper understanding. The transformations between and within representations are the primary difficulties 
in learning mathematics (Duval, 2006). Students are able to solve simple word problems using informal strategies 
(e.g., guess-and-test, unwind) in order to derive the correct answer (Koedinger & Nathan, 2004). Nonetheless, 
transformations between textual information and symbolic representations remain the primary difficulty when 
solving these types of problems (Jupri & Drijvers, 2016). 

Translating problems into tables and graphs allows students to represent and solve word problems, particularly 
with regard to the use of functions (Brenner et al., 1997; de Bock, van Dooren, & Verschaffel, 2013) and statistics 
(Friel, Curcio, & Bright, 2001). Tables are used to organize data and exhibit clear presentations when a variable has 
various values. For example, a table-like diagram can be used to solve time-distance-speed problems (Litvinova, 
2014). This provides a stepwise, systematic method by which to extract information from a problem and present it 
in cells within a table. Tables can be used to present information in an explicit manner, emphasize empty cells, and 
highlight patterns and regularities (Ainsworth, 1999). This type of tabular representation is always used to present 
mathematical relations (e.g. functions) because it provides an ordered arrangement of rows and columns showing 
the corresponding relationship. However, the semantic relationship between the various dimensions can be a 
challenge for students to follow by themselves, particularly younger children (Underwood & Underwood, 1987). 

“Diagrams are a frequent accompaniment to mathematical thinking” (Presmeg, 1986, p. 42); visual 
representations can be used to illustrate the organization of information. Graphical representations can be used to 
provide an overview of information with a clear indication of the direction, configuration, and relation of the 
objects. Using schematic spatial representations to illustrate the relationships between objects has been shown to 
enhance performance in solving mathematical problems (Ahmad, Tarmizi, & Nawawi, 2010; Hegarty & 
Kozhevnikov, 1999). Researchers have developed numerous types of schematic diagrams to make it easier to solve 
word problems. Lewis (1989) proposed a diagramming method for the representation of arithmetic word problem 
in which a number-line is used to indicate the values being compared. Students using such diagramming method 
showed a notable improvement in their comprehension of descriptions that included inconsistencies in language. 
Jitendra et al. (2007, 2011) proposed a schema-based instruction method that proved effective in emphasizing the 
mathematical structure of ratios, percentages, proportions, changes, and comparisons. Students were taught to 
classify problems by type and then select a schematic diagram appropriate to the representation of the features 
specific to that problem. For example, a fraction diagram can be used to illustrate a part-whole comparison, wherein 
students identify critical information and place it in areas of the diagram. Problems are easily solved by translating 
information in the diagram into a mathematical equation. Mathematicians often use graphs to illustrate structures. 
STG is a node-link diagram comprising nodes and links, each of which represents various entities and the 
relationships among them (Ware, 2013, p. 222). The rectangle boxes (nodes) in Figure 1 show the initial state of 
various entities, and the connecting lines (links) represent the transition paths between them. When a probability 
appears close to the line, it is easier for students to understand the transition idea depicted in the textual description. 
Essentially, diagrams are an effective tool for connecting textual description to mathematical expression. They are 
particularly valuable in assisting students to comprehend overall concept. 

Guiding Visual Attention 
Graphs can be used to focus on the most important features while excluding extraneous information that could 

be distracting (Mayer, 2009). Humans receive most of their information through sensory (visual) memory. Attention 
is the primary selection mechanism determining which information will be processed and stored after it enters the 
working memory via the senses. This is particularly important in the presentation of instructional messages. The 

 
Figure 1. An example of state transition graph 
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processing associated with working memory leads to the storage of knowledge in the long term memory. This 
process is commonly called the modal model of memory (Atkinson & Shiffrin, 1968). The auditory and visual 
systems are the main pathways for external information. Since the 1950s, visual search has been the key paradigm 
in research on attention (Müller & Krummenacher, 2006). 

Treisman and Gelade (1980) conducted experiments on feature search tasks and conjunction search tasks. 
Participants conducted feature search tasks using single features (e.g. colors or shapes) on a tachistoscope. 
Conjunction search tasks are defined as those involving the conjunction of different features. Single visual features, 
such as shape, color, size, orientation, and motion, can be perceived in a parallel model (Pashler, 1988; Treisman, 
1986; Wolfe, 1998). Parallel scanning of the entire field of vision involves automatic processing. For example, we 
can easily find a red dot within a pile of green dots without having to focus on each dot separately, such that the 
reaction time and number of objects are unrelated. In contrast, complex visual operations (e.g. combining two or 
more features) require greater attention resources to perform visual searches in a series. The design of teaching 
materials should include such features to guide the attention of students when dealing with information containing 
multiple graphical elements. 

The organization of elements must also be taken into account in instructional design. The Gestalt approach, 
founded by gestalt psychologist Max Wertheimer (1880-1973), provides one approach to the problem of perceptual 
grouping. Goldstein (2014) summarized a number of principles related to perceptual organization. Objects that are 
similar, near, moving in the same direction, within the same region of space, or presenting at the same time are 
good candidates for grouping. Furthermore, connected areas with the same visual properties (e.g., lightness, color, 
texture, or motion) may also be perceived as a single unit. These ideas can be used to highlight important 
information in instructional design. For example, the split-attention effect based on cognitive load theory suggests 
that written text should be closely integrated with diagrams; i.e., using the nearness principle of perceptual 
organization (Plass, Homer, & Hayward, 2009; Sweller, 1994; Sweller et al., 1990). When written text is placed next 
to its referents, learner don’t have to split their attention. This reduces the cognitive load associated with visual 
searches and facilitates learning. 

Design of Instructional Messages 
The limited cognitive resources of humans make it impossible to process a great deal of information at one time. 

Thus, the complexity of information and the means of presenting that information are the two main factors that 
must be taken into account in the design of instructional materials (Marcus, Cooper, & Sweller, 1996). When using 
transition matrices to solve word problems, some of the information must be clarified before it is transferred from 
text to the matrix. As mentioned earlier, problems can be translated into tables and graphs to make them more 
comprehensible; however, the information in tables and graphs can also be very complicated. We proposed three 
features to reduce the complexity of presenting information. 

The first feature we call a step, which refers to a segmentation separating a general concept into several isolated 
and meaningful parts. For example, presenting procedural information first and conceptual information later helps 
students to understand tasks that require both types of information (Kester, Kirschner, & van Merriënboer, 2006). 
Similarly, Ayres (2006, 2013) separated terms in a polynomial (as single elements) to elucidate the meaning and 
operation of signs in each element. Separating multi-step mathematical problems into smaller steps is a common 
approach to reducing complexity. In a worked example on dice, Luzón and Letón (2015) showed that students who 
were taught using a step-by-step animation outperformed those who were taught using a static presentation that 
displayed all the information simultaneously. A segmented solution can be used to reduce the cognitive demand 
on students while seeking to grasp the instructional content.  

The second feature we call a block, which refers to hints indicating a relationship among multiple elements. In 
multimedia design, designers commonly use cues or signals to assist in the selection, organization, and integration 
of related information without the need for further guidance (Mayer, 2009). Examples include arrows (Crooks, 
Cheon, Inan, Ari, & Flores, 2012), flashing entities (Hong, Thong, & Tam, 2004), abrupt visual onsets (Yantis & 
Jonides, 1990), and different colors (Jamet et al., 2008) to capture the attention of observers. These visual clues can 
also be used to emphasize the relationships among important entities. These and the gestalt principles mentioned 
earlier are used to block related information in order to direct the attention of students to the most essential 
elements. 

The third feature we call structure, which refers to contextual information on which connotations are based. In 
the design of instructional messages, steps and blocks are used to reduce interactions among the elements (Sweller 
et al., 2011), thereby facilitating the selection and organization of essential information. Reducing interaction 
reduces cognitive load and thereby facilitates learning. Using cues in both time and space, structure and verbal 
guidance can help students generate a sense of context, which connects elements of the current problem with the 
prior experiences of students. Contextual integration triggers schemas for subsequent integration in the learning of 
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concepts (Chen, Lee, Lei, Tso, & Lin, 2017). Two other indicators must also be taken into account: (a) 
communicability: the degree to which students can grasp the information necessary for selection and organization, 
and (b) connectivity: the linking of information with the prior experiences of students to form schemas for the 
integration of concepts. 

In short, cognitive processes must be taken into account in the design of teaching materials. In this study, we 
integrated features within an STG to represent the operational relationships observed in transition matrices. The 
spatial arrangement of information in a graph can be used to facilitate the selection and organization of content, 
thereby leaving students more cognitive resources for integration and learning concepts. 

METHODOLOGY 

Participants and Design 
One hundred and fifty-six students participated in this study. The participants comprised four classes of grade 

12 students in a vocational high school in Taiwan. Two of the classes were randomly assigned to the experimental 
group to receive instruction based on STG, whereas the other two classes formed a control group to receive 
instruction based on matrix-like tables. The students were divided into high mathematics achievers and low 
mathematics achievers based on the average scores achieved in examinations the previous semester. The STG group 
contained 44 high achievement students and 41 low achievement students. The Table (control) group contained 28 
high achievement students and 43 low achievement students. 

We adopted a two-factor quasi-experimental design to compare the efficacy of representational methods (STG 
vs. Table) on learning performance among students with high or low achievements in mathematics. Before the 
lesson on transition matrices, a prior knowledge test was administered to evaluate the students’ prior knowledge 
concerning matrix operations. An independent sample t test confirmed that there were no pre-existing significant 
differences between the experimental and control groups, based on their mock examination results from the 
previous semester (t = .263, df = 154, p = .793 > .05) and prior knowledge scores (t =.154, df = 154, p = .901 > .05). 
Thus, we adoped a posttest-only design using proxy pretest (Shadish, Cook, & Campbell, 2002) to characterize the 
performance of the STG group and the Table group in learning using transition matrices with or without a 
structured representation. 

Procedures 
All participants attended a 50-min instructional session on transition matrices. The same teacher taught both 

sessions. The day before this lesson, participants took a 10-min prior knowledge test that included five questions 
concerning the underlying concepts and calculation of matrices. Following the lesson, all participants also 
completed a 30-minute posttest. 

The topic in this study was transition matrices. We prepared multimedia teaching materials based on the 
instructional message framework using PowerPoint with AMA add-ins as well as prompts and whole-class 
discussion (Lee & Chen, 2015, 2016). Both groups were shown slides with the same instructional content; however, 
the representations used in the worked examples differed between the groups. 

Lesson Materials 
Two worked examples were used to illustrate the utilization of transition matrices. Both examples were word 

problems involving probability. The examples were presented in the same style using the same number of steps; 
however, they were presented using transition matrices ordered in different ways. The question was presented at 
the top of each slide to allow students to read the descriptions whenever necessary. Figure 2 presents one of the 
word problems concerning the proportion of Mass Rapid Transit (MRT) riders among the total number of 
commuters each month. 

We adopted the same instructional design principles in drawing up the PowerPoint presentation, with the aim 
of reducing cognitive load and promoting visual search efficiency. Figure 3 presents slides based on these 
principles. Irrelevant words and pictures were eliminated to reduce cognitive load, and the teacher presented 
textual descriptions orally. Including only key concepts on the slides was expected to help students to connect what 
they heard with what they read. We also specified colors to emphasize essential information and group related 
information. Finally, the elements were segmented so that they could be added to the slides in a step-by-step 
manner. Related information was presented closely to reduce split-attention (Sweller et al., 2011), which helped 
teachers interpret information about stepwise and associated image elements for their students. We used oral 
explanations to limit the cognitive resources that would otherwise be required for visual searching. Physical and 
temporal contiguity has been shown to reduce errors and save time. 
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Figure 2. One of the word problems used in this study 
 

     
                                               (a)                                                                                                 (b) 

 

 
                                                                                                 (c) 
Figure 3.  Screenshots showing design guidelines used in drawing up instructional slides  (a) Irrelevant information was eliminated; 
i.e., only key concepts were displayed  (b) Colors were used to identify classes  (c)  Elements were segmented and then added 
stepwise 

Taipei City Government surveys the status of commuters’ monthly usage on transportation as the following: 
For commuters who take MRT this month, 80% of them will continuously take the MRT, 10% will change to drive a car 
and 10% will change to ride a scooter next month. 
For commuters who drive a car this month, 50% will continuously drive a car, 30% of them will change to take the MRT 
and 20% will change to ride a scooter next month. 
For commuters who ride a scooter this month, 60% will continuously ride a scooter, 20% of them will change to take the 
MRT and 20% will change to drive a car next month. 
(1) Write the transition matrix A of this investigation. 
(2) It is known that the current status of MRT commuters are 50%, car commuters are 10%, and scooter commuters are 
40%. What is the proportion of MRT commuters to all commuters after one month? 
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Despite differences in the representations presented in the STG and Table groups, the manner of presentation 
was the same. As shown in Figure 4, we used similar instructional design principles in outlining the information 
in the STG and matrix-like tables; both groups received the same information but received it using different 
representations. The state transition graphs and tables were segmented and then presented in a step-by-step 
manner to help students form associations between the visual images and the oral descriptions provided by the 
teacher. Color blocking was used to connect related information. The state transition graph presented information 
based on spatial proximity with the aim of facilitating the selection and retrieval of information while allowing for 
visual rehearsals when necessary. In other words, STG and tables were both presented in a stepwise and blocked 
manner; however, STG organized the information within a structured presentation. 

Measures 
Students’ prior knowledge was assessed using a five-question prior knowledge test, which included two 

questions on matrix multiplication, one question on the features of transition matrices, and two word problems. 
The Cronbach’s α of 0.766 demonstrated that the internal consistency of the test paper was within the acceptable 
range. 

The posttest comprised 8 questions (including 17 sub-questions) for a total score of 108 points. The problems 
dealt with (a) knowledge and comprehension and (b) problem-solving and application. Our analysis of problem 
difficulty was based on the average numbers of students with high and low achievement who answered the 
problem correctly. The average difficulty of the problems was 0.54, and the degree of discrimination ranged from 
0.33 to 0.89. The test paper presented a Cronbach’s α of 0.907, which indicates a high degree of internal consistency. 

All of the problems were reviewed and revised by two experts in instructional design and three mathematics 
teachers averaging more than 10 years of teaching experience, indicative of high content validity. 

RESULTS 
In the posttest, the students with high learning achievement in mathematics obtained higher average scores (M 

= 73.33, SD = 27.63) than did the students with low learning achievement (M = 44.98, SD = 27.16). Overall, the 
students in the STG group obtained higher average scores (M = 65.05, SD = 31.96) than did the students in the Table 
group (M = 49.70, SD = 21.17). 

In the posttest, the high-achieving students in the STG group obtained higher average scores (M = 81.77, SD = 
23.44) than did the high-achieving students in the table group (M = 60.07, SD = 28.87). In the posttest, the low-
achieving students in the STG group obtained higher average scores (M = 47.10, SD = 30.28) than did the low-
achieving students in the table group (M = 42.95, SD = 24.01); however, the difference was not significant. 

Two-way ANOVA (Analysis of Variance) also revealed significant interaction effects between teaching 
materials and learning achievement (F = 4.127, p = .044, η2 = .026). Table 1 lists the results of simple main effects 
analysis. High-achieving students in the STG group as well as the Table group outperformed low-achieving 
students in both groups. 

     
                                       (a) STG group                                                                           (b) Table group 
Figure 4. The different representations used in the STG and Table groups 
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The results are consistent with the central argument in that the use of STG reduces element interaction among 
presented information, thereby making it easier for high-achieving students to find information relevant to matrix 
calculations. It also leaves them with more cognitive resources to focus on deciphering the meaning of matrix 
calculations. This method of representation also forces students to perform the same thought process repeatedly 
while writing down the correct transition matrix. This type of repetition induces deeper understanding and 
automation of schemas, thereby enhancing the integration of information to facilitate learning. The use of tables to 
represent information requires students to search for and compare figures repeatedly in order to comprehend the 
meaning and connotations of the matrix calculations. This high degree of element interaction imposes greater 
cognitive load on the working memory. Furthermore, students sometimes regard tables as transition matrices 
without fully understanding the connotations of transition matrices or establishing associations. This makes it 
difficult for student to solve problems in a logical manner. As shown in Figure 5, the students solved the question 
below using a copy-and-paste approach in order to deal with the presentation of data in the table. 

Students can bring their lunchbox or eat at the school cafeteria. The variation between these two choices 
was estimated as follows: 

       This week 
Next week 

Lunchbox School cafeteria 

School cafeteria 30% 40% 
Lunchbox 70% 60% 

20% of the students brought their lunchboxes and 80% of the students ate at the school cafeteria during 
the first week of a new semester. The proportions of students’ bringing a lunchbox or eating lunch at 
the school cafeteria were a and b in the second week and �𝑥𝑥 𝑦𝑦

𝑧𝑧 𝑤𝑤� �
0.2
0.8� = �𝑎𝑎𝑏𝑏�. Identify the elements: y= 

____, z = ____. 

The students in the STG group first drew the STG and then used it to solve the problem. In contrast, the student 
in the Table group (even high-achieving students) simply copied the table as a transition matrix and then set off on 
the wrong course in trying to solve the problem. This student confused the elements displayed in a table format 
with those presented in a matrix. 

Table 1. Summary of two-way ANOVA of simple main effects of STG group and Table group and learning achievement groups 
in the posttest 

Source of variation SS df MS F Sig η2 Post hoc comparison 
Different representation 

STG 25518.475 1 25518.475 35.122 .000 .297 High > Low 
Table 4969.025 1 4969.025 7.341 .008 .096 High > Low 

Learning achievement in mathematics 
High 8058.416 1 8058.416 12.229 .001 .149 STG > Table 
Low 360.436 1 360.436 .485 .488 .006 STG = Table 

 

      
                                 a) STG group                                                                               b) Table group 
Figure 5. Problem-solving skills of high-achieving students in the two groups 
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DISCUSSION 
In this study, we examined the influence of different representations (STG vs. Table) on the learning 

performance of students learning to solve word problems via transition matrices. We also took into account the 
student’s previous learning achievements in mathematics. High-achieving students who were taught using STG 
outperformed high-achieving students who were taught using tables. No significant differences were observed in 
the performance of low-achieving students taught using STG or tables. 

The use of a transition matrix to solve word problems involves complex textual and procedural information. 
Most textbooks guide students to transfer information into tables and then intuitively convert it into matrices for 
processing. We employed a state transition graph as an example of multimedia instruction to exhibit problem-
solving process in a stepwise, blocked, and structured manner to support effective learning. Detailed segmentation 
can be used to reduce cognitive load involved in matching visual images to oral descriptions. Gestalt theory posits 
that presenting materials in which connected ideas possess the same visual properties (e.g., lightness, color, motion) 
helps students to perceive related information as a single unit. Tables and STGs can both be used to promote 
learning; however, STG presents information in a graphical form; i.e., structured within a contextual scaffold. 
Integrating elements within a diagrammatic schema helps to reduce cognitive load and enhance comprehension 
(Marcus et al., 1996). As using the schema-based instruction is critical to success in problem solving (Jitendra et al., 
2011). 

Nonetheless, only high-achieving students were shown to benefit from the STG approach. In the current study, 
the effectiveness of learning was investigated using only a limited number of interventions. Further research will 
be needed to interpret how the cognitive behaviors of students influences reading comprehension, particularly the 
process of using STG or table representations influence student understanding. Furthermore, Sweller et al. (2011) 
reported that learning performance depends on the complexity of the learning materials, intrinsic cognitive load, 
and the expertise of learners. Low-achieving students possess less of the prior knowledge, such as matrix 
multiplication, which is required to solve the problems. Even though STG makes it easier to comprehend the 
operational meaning of transition matrices, students may still encounter difficulties in the selection and 
organization of information. For example, a failure to integrate multiple elements would leave them without the 
available resources required for integration and comprehension. The expertise of learners is based on schemas 
stored in their long-term memory, which means that a pre-training design (Clarke, Ayres, & Sweller, 2005) can be 
used to reduce cognitive load by strengthening key concepts as specific prior knowledge. Low motivation and a 
lack of willingness to participate may also contribute to low learning effectiveness. Low-achieving students possess 
less prior knowledge and are less adept at the automatic formulation of schemas. As a result, they tend to perceive 
learning tasks as difficult and must invest greater effort, which can hamper the selection and organization of 
information resulting in a loss of interest. Interviews could be conducted in groups based on learning achievement, 
and qualitative research methods could be used to clarify the influence of teaching materials on student 
impressions. The provision of appropriate instructional scaffolding and using simple but interesting examples 
could help to lessen the perceived difficulty as well as the effort that must be invested. Regardless, it would be 
worthwhile to examine alternative approaches to STG in order to make it easier for low-achieving students to learn 
transition matrices. 

Mathematical representations provide complementary information and make it possible to develop a deeper 
understanding of concepts (Ainsworth, 2006). We propose the representation of information in a stepwise, blocked, 
and structured manner. Each feature can be presented discretely to enable an understanding of different concepts. 
STG and tables were both shown to help students in the development of skills pertaining to the application of 
transition matrices. A control group given no representations at all (i.e., the teacher guiding students to search for 
relevant information from a text-only description for transition matrices) could further clarify the influence of table 
representations on the teaching of transition matrices. Finally, it would be worthwhile to investigate the influence 
of STG and tables on retention. In the future, we suggest administering a delayed posttest to confirm the efficacy 
of the various representations in facilitating schema construction. 
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