
 
 EURASIA Journal of Mathematics, Science and Technology Education, 2021, 17(11), em2033 
  ISSN:1305-8223 (online) 
 OPEN ACCESS Research Paper https://doi.org/10.29333/ejmste/11265 
 

 

 

© 2021 by the authors; licensee Modestum. This article is an open access article distributed under the terms and conditions of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/). 

 jfiallo@uis.edu.co (*Correspondence)  angelica2208098@correo.uis.edu.co  sanevepa@uis.edu.co 

Demonstration Process Skills: From Explanation to Validation in a Precalculus 
Laboratory Course 

Jorge Fiallo 1*, Angélica Mayerly Velasco Méndez 1, Sandra Evely Parada Rico 1 

1 Universidad Industrial de Santander, COLOMBIA 

Received 1 July 2021 ▪ Accepted 22 September 2021 
 

Abstract 
We present results of a research developed with first semester students from a Colombian Public 
University based on classroom intervention in a precalculus laboratory course mediated by an 
interactive mathematical software. We characterize and exemplify the cognitive skills of 
explanation, justification, argumentation and validation, using a methodological tool of analysis 
that integrates the ckç model of Balachef and Margolinas to Toulmin’s model. This tool allows us 
to identify some elements that characterize each of these skills and allow us to offer a structure 
of analysis that we present as a proposal for the design of activities in research, based on 
classroom interventions that promote the development of demonstration skills. 

Keywords: argumentation, cognitive demonstration skills, explanation, justification, precalculus, 
validation 

 

INTRODUCTION 
At the beginning of the first university courses, 

students are expected to have mathematical 
competencies, such as those indicated in the 
Mathematics Curricular Guidelines (MEN, 1998) and the 
Basic Standards in Mathematics Competencies (MEN, 
2006). However, in the university reality, professors 
believe that “students do not have the necessary 
knowledge to learn calculus”. 

“[…] what is found in the calculus scenario is a 
lack of understanding of the concepts, poor 
handling of reasoning, apart from a not very solid 
algebraic competence in the resolution of new 
problems, and on the part of the teachers, the 
frustration caused by the certainty that they have 
not understood us” (Neira, 2000, p. 88). 

In the Basic Standards of Mathematical Competences, 
it is stated that Being mathematically competent means:  

• “Formulating, posing, transforming and solving 
problems from everyday life situations, from 
other sciences and from mathematics itself.  

• Using different representation registers or 
symbolic notation systems to create, express and 
represent mathematical ideas.  

• Using argumentation, proof and refutation, 
example and counterexample, as means of 
validating and rejecting conjectures, and moving 
towards demonstration.  

• Mastering mathematical procedures and 
algorithms and knowing how, when and why to 
use them in a flexible and effective manner” 
(MEN, 2006, p. 51). 

Since the first semester of 2013, the Universidad 
Industrial de Santander has been implementing a pre-
calculus laboratory course, whose purpose is to help 
students develop “variational thinking”; understood as 
“a conceptual field that involves concepts and inter-
structured and linked procedures that allow one to 
analyze, organize and mathematically model situations 
and problems of both the practical activity of man, as 
well as those of the sciences and mathematics itself 
where variation is found as their substratum” (MEN, 
1998, p. 72). 

The course encourages an active process of problem-
solving, involving reasoning and demonstration, 
communication, representation, and the use of 
mathematical procedures and algorithms. In addition, 
technology is incorporated as key to the production of 
meaningful learning, around the two central ideas of the 
Calculus of Variation and Accumulation, which allow 
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the student to establish a mathematical level relevant to 
the requirements of the Differential Calculus course 
(Fiallo & Parada, 2018). 

In the design of the pre-calculus course-laboratory, 
activities have been implicitly included that promote the 
development of processes through problem solving and 
guiding questions, which are answered in the interactive 
mathematical software GeoGebra. In turn, the research 
project of the Vice-rectory for Research and Extension of 
the Industrial University of Santander “Study of the 
mathematical processes developed by students in a 
precalculus course mediated by interactive 
mathematical software” (Research project 2425, VIE-UIS, 
2018), was proposed with the aim of providing 
information for a better understanding of the 
mathematical processing in the context of a pre-calculus 
laboratory course mediated by GeoGebra in order to 
answer the question: What mathematical processes skills 
are developed in a precalculus course-laboratory 
mediated by interactive mathematical software? 

As a result of this and other investigations, cognitive 
skills were proposed for each of these processes (Fiallo & 
Parada, 2018), which have served as a guide for the 
teachers of the course to promote the development of 
these skills, so that students achieve greater success in 
the Differential Calculus course. In particular, for the 
demonstration process, the skills of explanation, 
justification, argumentation and validation have been 
proposed; besides considering convince as one of the 
functional characteristics of the demonstration. The 
character of conviction is specific to the demonstration, 
i.e. it is built with the objective of making what is 
affirmed irrefutable, it is addressed to a mathematical 
community, which recognizes the validation value and 
consequently the conviction value of the demonstration 
(Fiallo, 2011, p. 78). 

In this paper, we present results of a research based 
on a classroom intervention (Stylianides & Stylianides, 
2013, 2017), with close collaboration between teachers 
and researchers, addressing problems of variation, 
change, approximation and trend, and analyzing 
students’ written productions and video recordings, in 
order to characterize the cognitive skills achieved by 
students participating in a precalculus laboratory course 
in relation to the process of mathematical proof. This 

objective responds in part to the research question posed 
above. 

For the analysis of the productions, the analytical tool 
proposed by Pedemonte (2005) was used, based on the 
incorporation of the ckç model (Balacheff & Margolinas, 
2005), in Toulmin’s schemes (Toulmin, 2003), and the 
characterization of demonstration given in Fiallo (2011). 
The intervention was carried out in the second semester 
of 2020, with 30 incoming students to science and 
engineering majors at university (16 - 19 years old), who 
presented a characterization test on variational thinking, 
which placed them at risk to succeed in the Differential 
Calculus course. The course was carried out during 
sessions of four hours each, stretching over a period of 
fifteen days, in which the aim was to work and reinforce 
the mathematical processes. 

THEORETICAL BASIS 
Taking into account that a classroom intervention 

(Stylianides & Stylianides, 2013) aims to improve 
classroom practice by the design of such interventions; 
and also to deepen the understanding of the ways of 
acting on students’ learning problems through teaching, 
we present an intervention that has theoretical and 
methodological support in the ideas of the book 
“Dynamic study of change and variation: Precalculus course 
mediated by GeoGebra” (Fiallo & Parada, 2018). These 
ideas are based on some reflections on the historical and 
epistemological evolution of the objects of study of the 
Differential Calculus course and the conceptualization 
that has been achieved from the theoretical and 
empirical study of calculus learning problems. We use 
these ideas as the basis to achieve the close collaboration 
between teachers and researchers and we will try to 
synthesize in the following sections, complementing 
them with other research results, focusing the attention 
on the skills of the demonstration process. 

Reasoning About Variation Phenomena 

The search for solutions to the problems of mechanics 
and geometry led several of the great mathematicians to 
search for patterns, regularities and generalization 
through observation, experimentation and intuition, so 
that later other great mathematicians organized and 
systematized the ideas around definitions, axioms and 

Contribution to the literature 
• This article presents a characterization of the demonstration skills, pointing out and explaining with 

examples, the structural and referential elements of each of the proposed skills. 
• The article shows an example that addresses the need for research-based interventions in the classroom, 

for the case of teaching and learning the demonstration in a differential calculus course. The course was 
developed during the COVID-19 pandemic through technological and methodological adaptations. 

• The article provides theoretical and methodological contributions for the teaching of the demonstration 
in a higher education course. 
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theorems. Several of the concepts worked on in the early 
days of calculus were assumed to be true because they 
validated the ideas and conjectures raised by intuition, 
experimentation and induction. However, after the 
axiomatization of the ideas of calculus and the era of 
modern mathematics, intuition and induction took a 
back seat, giving way to an exaggerated emphasis on 
rigor, which led to the tension between intuitive, 
inductive, abductive and deductive reasoning with the 
due consequences in the teaching of mathematics that 
we have already pointed out as stated by Moreno (2014): 

The tension between intuitive, inductive and 
purely deductive reasoning continues gravitating 
today in the educational milieu. Today, let us 
reiterate, the words of René Thom remain as valid 
as ever: The real problem facing teaching is not 
that of rigor but the problem of the development 
of the meaning and existence of mathematical 
objects... if there is a choice between rigor and 
meaning, I certainly choose meaning (p. 107). 

Deductive reasoning is a way of thinking that arises 
from the need to ensure the validity of a statement and 
the mathematical way to achieve this, is through 
deductive demonstration, however, as Polya puts it: 

All our knowledge, apart from mathematics and 
the logic of demonstration, consists of conjecture. 
We secure our mathematical knowledge by 
demonstrative reasoning, but we support our 
conjectures by plausible reasoning. 
Demonstrative reasoning is certain, definitive, 
and beyond controversy. Plausible reasoning is 
haphazard, debatable, and provisional (Polya, 
1966, p. 13). 

On the other hand, from the didactics of mathematics 
it has been proposed that the role of a proof is not only 
to show the validity of a theorem, but also to show the 
reasons for this validity. A demonstration should make 
it possible to understand the theorem, not only to say 
what is true but also to say why it is true. 

With these ideas in mind, we consider demonstration 
from a broad perspective, as the process that includes all 
the arguments put forward by students to explain, justify, 
argue or validate with a view to convince themselves, other 
students and the teacher of the veracity of a mathematical 
statement (Fiallo, 2011, p. 81). This characterization of 
demonstration allows considering several types of 
demonstration, product of intuitive, inductive or 
empirical, deductive and abductive reasoning. 

The skills required in the process of reasoning about 
variation phenomena correspond to explaining, 
justifying, arguing and validating. These skills are 
promoted when students are asked in the statement the 
question why, and when they are asked to give the 
answer to the activity and explain the procedure. 

Students have to write and expose the solution to peers 
and to the teacher, describing the object of knowledge 
with clear words or examples, expressing the reason for 
the solution and the procedure performed, in order to 
make the object of knowledge intelligible to others. 
When students exchange ideas and submit them to 
reflective critique, they sharpen their ability to criticize 
and follow the arguments of others. They also develop 
clearer and more coherent communication of 
understandings through verbal explanations, notations 
and mathematical representations appropriate to 
explain ideas about change, variation, interdependence, 
approximation and trend (Fiallo & Parada, 2018). 

Cognitive Demonstration Skills 

In this section cognitive skills are considered as: 

“The mental operations that result from the 
coordination of actions aimed at achieving an 
objective linked to a branch of institutionalized 
knowledge. In the same way, we consider as 
cognitive skill the actions that an individual can 
develop to interact with an object that he can 
identify as an object of study by himself “(Rueda, 
2016, p. 29). 

According to this definition and the definition of 
demonstration, which comprises all arguments put 
forward by students to explain, verify, justify or validate 
with a view to convince themselves, other students and 
the teacher of the veracity of a mathematical statement 
(Fiallo, 2011, p. 81), we propose the following cognitive 
skills of demonstration to be incorporated into the pre-
calculus laboratory course. 

Explanation skill 

Explaining implies providing clarity about a given 
phenomenon or situation. From Mathematics Education, 
Balacheff (2000) considers explanation as the primary 
idea from which proof and demonstration are derived. 
For his part, Duval (1992-1993) states that explanation is 
a reflective activity in relation to another, i.e., it becomes 
a means to interweave or unite ideas, giving one or more 
reasons for understanding data, a phenomenon or a 
result. The National Council Teachers of Mathematics 
(NCTM, 2003) states that explanation has to do with 
giving clarity to the answers of a given procedure, using 
increasingly rigorous language as the school level 
progresses. When the purpose of the class is for students 
to demonstrate the ability to explain, they are expected 
to express orally and in writing, using mathematical 
language, the strategies, predictions, conjectures and 
results when faced with the resolution of a mathematical 
problem. 
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Justification skill 

Justifying consists of producing reasons or 
arguments, establishing relationships between them and 
examining their acceptability (Fiallo & Parada, 2018, p. 
73). Justification refers to the activities and processes 
through which an assertion is supported, the reason for 
a process is stated, and a conclusion is admitted or 
refuted by means of relevant reasons such as carrying 
out a procedure, proposing a certain strategy, and using 
a counter example to achieve conviction and adherence 
to its thesis (Bautista, 2017). 

Jorba et al. (1998) state that justifying is “producing 
reasons or arguments, establishing relationships 
between them and examining their acceptability with the 
aim of modifying the epistemic value of a thesis in 
relation to the body of knowledge in which the 
knowledge that is the object of the thesis is included” (p. 
48). 

Rigo et al. (2011) use the term justification to refer to 
all kinds of argumentative resources given in 
mathematics classes to support statements with 
mathematical content and to promote a degree of 
adhesion and conviction towards it. Justification usually 
has two purposes: 

• Epistemological purpose, which consists of 
explaining or substantiating a mathematical truth, 

• Psychological purpose, which consists of the 
interlocutor achieving some learning. 

Argumentation skills 

Taking into account the functional characteristics of 
argumentation, Pedemonte (2002), states that 
argumentation in mathematics is: 

 A rational justification, visible in the form of 
reasoning (inductive, abductive, deductive). 

From the epistemological point of view, 
argumentation in mathematics is developed when 
someone wants to convince (himself or others) of an 
assertion; taking into account that “persuade” and 
“convince” have different meanings. Convincing implies 
modifying opinions and confidences by appealing to 
rationality, while persuading seeks consent without 
appealing to rationality. Convincing implies persuading 
but persuading does not imply convincing. In the case of 
a mathematics class, the mathematical community may 
be the teacher, one or more students, or the whole class. 

The field of an argumentation in mathematics 
delimits the criteria of validity. For example, the 
validation axioms of an argumentation in geometry are 
different from the axioms used in an argumentation in 
algebra. 

Validation skill 

According to González and Rodríguez (2006), 
validation is a complex and central skill in mathematics, 
and its mastery allows students to gradually acquire 
autonomy in their learning. Validation requires the 
student to give reasons, to justify their assertions and be 
willing to defend them with the intention of convincing 
the peer group. 

Validation brings into play sharing where the 
decisions taken are debated and the need to guarantee 
their validity or to denounce the fact that one does not 
agree with the arguments of the other is expressed. 
Validation is characterized by the desire to give strength 
or firmness to what has been concluded, to make it valid. 
In mathematics, validating a statement means attesting 
to its truth within a mathematical theory. In a sense, 
proof, like argumentation, aims at finding the reasons for 
what is “true”(Pedemonte, 2002). 

On the other hand, Margolinas states that validation 
need not necessarily be linked to proof. 

“For the mathematician and for the educator, the 
term validation often evokes the problem of proof. 
We do not think that the point of view of 
validation is completely included in that of proof. 
... we are interested in what generally happens at 
the end of a mathematical problem-solving task, 
that is, at the moment when we try to know 
whether the result obtained is appropriate to the 
problem posed. The validation point of view 
begins then by examining the end of the 
resolution” (Margolinas, 2009, p. 22). 

These skills are evidenced in the actions performed 
by the students in the resolution of the problems posed, 
as we will see in the analysis and exemplification section, 
and in the characterization of these skills. 

DEMONSTRATION COGNITIVE SKILLS 
ANALYSIS TOOL 

We present a data analysis model that allows us to 
better visualize the skills used by students to solve the 
problems posed. This model is based on the structural 
characteristics of an argument proposed by Toulmin 
(2007), and the analysis of the reference system proposed 
by Balacheff and Margolinas (2005). According to 
Pedemonte (2002, 2005) Toulmin’s model allows us to 
transform the process of solving a problem into a 
concatenation of argumentation steps, but it is not 
sufficient for the purpose of performing a cognitive 
analysis, so a tool is needed to consider the reference 
system of the argumentation and to consider the aspects 
related to the student’s knowledge that are at stake 
during the resolution of a problem. This tool is offered 
by the cK¢ model. 
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Toulmin’s Model 

An argument in Toulmin’s model is composed by a 
scheme (Figure 1) formed by (Pedemonte, 2005, p. 321-
322). A claim (C) or conclusion statement that the 
speaker intends to justify; some data (D) that serve the 
speaker to justify the statement C; a warrant (W) that 
offers a rule; a general principle capable of serving as a 
basis for this inference, of acting as a bridge between D 
and C. 

The first step in the argument is the expression of a 
point of view; it is the conclusion, the objective of the 
argument. The argumentation must support that 
statement. The argumentation that is made to justify the 
claim is supported by those data. 

To go from the data to the claim, a “warrant” is 
necessary to legitimize this step. A warrant is a rule or a 
general principle that authorizes the launching of a 
bridge between data and claim. This warrant is the part 
of the argument that establishes the logical connection 
between the data and the claim. It is the reason for the 
acceptance or refutation of the argument. It is the point 
that can be refuted by the auditor. If the argument is not 
accepted, it is precisely the warrant that is criticized. 

In general, rules and data do not allow inferences to 
be made with an absolute degree of certainty. For this 
reason, a qualifier (Q) is used, which specifies the force 
with which the linkage of data to the inference allows the 
statement to be reached. The qualifier of the argument 
may not be explicit, but the argument will always be 
qualified as “true”, “probably true”, “probable”, etc. 

It is possible that particular circumstances may 
prevent the application of the inference to the field of 
data. The argumentative scheme provides for the 
restriction of its statement. If there are exceptions to the 
statement, the force of the warrant decreases. The 
conditions of the exceptions or rebuttal (Re) are then 
taken into consideration. The warrant can be questioned. 
It is then necessary to back it up, to support it with some 
justifications, which constitute the backing (B). 

The cK¢ Model 

The cK¢ model is a methodological tool proposed by 
Balacheff (2005) for the analysis of the knowledge 
mobilized by students in solving a problem. In the 
model, a conception is characterized by a quadruple (P, 
R, L, Σ), composed of a problem set (P); a set of operators 

(R); a representation system (L); and a control structure 
(Σ) (Balacheff & Margolinas, 2005, p. 82 - 83). 

An operator is what allows the transformation of 
problems. Operators are visible in students’ productions 
and behaviors. A representation system (linguistic or 
not) allows the expression of problems and operators. 
Representations allow the expression of controls, actions 
and problems, for anticipation and validation. 

The control structure provides and organizes the 
functions of decision, choice, validity and 
appropriateness of action (Balacheff & Margolinas, 2005, 
p. 84). 

The cK¢ Model in Toulmin’s Model 

The students’ conceptions that make it possible to 
construct a conjecture, constitute the basis of the 
argumentation. Their mobilization makes it possible to 
construct the argumentative process. The structure of 
Toulmin’s model is as follows by integrating the cK¢ 
model into it where the backing (B) is replaced by the 
students’ conceptions and the warrant by the operators 
of the conception (Figure 2). 

RESEARCH METHODOLOGY 
In this section, we present results of a research based 

on a classroom intervention (Stylianides & Stylianides, 
2013), namely, the precalculus laboratory course 
mediated by interactive mathematical software (Fiallo & 
Parada, 2018), the student sample, and our procedure for 
analyzing student productions.  

It is important to point out that in the transcriptions 
of the dialogues between students and teacher will have 
the following notation: Stu refers to the students’ 
interventions and T to the teacher’s interventions. 

Pre-calculus Laboratory Course 

The problems proposed in the course are based on the 
study contents of Calculus with contextual situations 
(problems for each 4-hour session), with the objective of 
generating spaces where students work as if they were 
mathematicians. 

 
Figure 1. Scheme of Toulmin’s model 

 
Figure 2. The structure of Toulmin’s model integrating the 
cK¢ model 
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The didactic component for the design of the 
activities was proposed taking into account the 
following phases: 

• Free exploration: at the beginning of the activity, a 
problem related to the topic to be studied is posed 
for the student to try to solve individually or in 
pairs without the use of the software. 

• Socialization of the results: the teacher promotes 
the participation of the students so that they 
communicate their solutions, discuss them in 
group, clarify doubts and mainly, correct errors, 
review concepts and promote the need to offer a 
mathematically valid solution to the problem 
posed. 

• Targeted exploration: the exploration of a file in 
GeoGebra is the starting point so that, through 
exploration and guidance guided by questions. 
Initially the student works individually, using the 
different tools of the software, can find answers to 
the problem, make conjectures and 
mathematically justify the results visualized in the 
different representations offered by the software, 
through its different views.  

• Explanation: discussion with the students and the 
teacher is suggested, the participation of the 
students is promoted so that they can propose 
their own solutions and discuss them with the 
group in general and with the teacher. The 
teacher’s role should be that of a promoter of 
debate, reflection and discussion of the ideas 
presented, in such a way that the construction of 
knowledge and the development of mathematical 
processes are achieved. 

• Free orientation: a new problem is posed to apply 
what has been learned. A challenging task, where 
the student must apply what he/she has learned, 
but not in a mechanical way.  

Intervention 

The intervention has been carried out since 2013 with 
incoming students to science and engineering majors at 
university (16 - 19 years old), who have presented a 
diagnostic test on variational thinking, which places 
them at risk to succeed in the Differential Calculus 
course.  

For the present article, the productions of the 
students of the second semester of 2020 were taken into 
account. The intervention was implemented on the 
GeoGebra Virtual Classroom (GVC) platform, under the 
remote attendance modality. The Zoom platform was 
used for the synchronous meetings of 4 hours per day, 
due to the worldwide confinement experienced as a 
result of COVID-19. 

The precalculus course workshops were set up in the 
groups module and in the book module of the GVC. The 

groups module allows the creation of a virtual classroom 
to propose research tasks to students, in which 
simulations and constructions can be published, 
allowing continuous individual and group feedback, 
constant communication with the teacher, sending 
answers, adding comments and uploading images. For 
the purposes of the research, this option was used in the 
individual work moments (free exploration, free 
orientation). Similarly, in the GVC, students have the 
possibility of interacting synchronously through the 
book option, which allows the teacher to instantly see the 
answers given by the students to the respective problems 
posed, and also helps to identify whether all students 
have accessed the problem and are working, since those 
who are not working, will have a blank answer space. 

The intervention was carried out with the close 
collaboration of teachers and researchers, with whom 
reflection and training sessions were held (before and 
during the development of the course), in which the 
theoretical and methodological elements proposed in 
Fiallo and Parada (2018) were discussed. The 
intervention from which the data for the study reported 
here were derived, was guided by the second author of 
this document, who was a teacher of the course. At the 
time the course was developed, she had previous 
training and experience received from undergraduate 
studies, which is now enriched by her vision as a 
researcher in training. 

EXPLANATION AND VALIDATION 
SKILLS ACHIEVED IN THE PRE-
CALCULUS LABORATORY COURSE 

Next, we present some examples of each of the skills 
analyzed, we present the outlines of the arguments 
made, we highlight dialogues between students and 
teacher, and finally we focus on the main elements that 
allow us to make the proposed characterization. 

Explanation Skills 

Explanation skills are promoted when students are 
asked to give the answer to the activity and explain the 
procedure. Students have to write and explain the 
solution to peers and the teacher, describing the object of 
knowledge with clear words or examples, expressing the 
reason for the solution and the process performed, in 
order to make the object of knowledge intelligible to 
others. We present the first task proposed in workshop 4 
(Figure 3).  

The following is an example of the explanation skill 
developed by one of the students (Stu1) when solving 
the problem. In Figures 4 and 5 we give evidence of the 
first analysis performed by the student, who in his 
reasoning considers that the problem is solved by means 
of a linear model. However, he himself realizes that due 
to the high amount of medicine that remained in the 
body, the model is not linear. 
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The student verbally states that this excess of 
medication in the player’s body could cause her death by 
overdose. This situation led to a group discussion and to 
the restatement of the conclusion statement. 

Stu2: Teacher, is it possible to find a dose in terms of 
days, or would it be to find a formula taking into account 
the dose? 

Stu1: Well, I think that it is not per day. In this case it 
would be a formula in terms of the dose because the 
player is taking medication and filtering 40%, but this is 
not done at the end, it is done before the intake. The 
remaining medication depends on the dose.  

Stu2: Yes, I also consider the same thing. In terms of 
the days, it would not be convenient because each day is 

different and depends on what is left in the body, i.e., the 
previous dose.  

The above dialogue led to a rethinking of the 
procedure previously performed by the student (Figure 
4). The new interpretation is shown in Figure 6.  

The student restates the solution by taking some 
particular examples, which allow him/her to arrive at a 
general equation (Figure 6), this being one of the 
fundamental activities to develop the ability to explain, 
since from these examples a pattern is identified, which 
leads to the use of different representations of the same 
mathematical object of study, thus contributing to seek 
strategies and procedures to make the solution to the 
problem known to his/her peers through a clear 
language. 

 
Figure 3. Filtration of the medication problem 

 

 
Figure 4. Stu1’s first response to activity 1 from workshop 

 

 
Figure 5. Scheme of the process of explanation of statement 1 
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In the explanation phase, where the discussion of the 
results is promoted, the student (Stu1) describes: “ In the 
first intake the player ingests 440 milligrams of 
medication and 60% of this is filtered, that is, 40% 
remains in the body”, therefore he writes 𝐷𝐷1 = 440 ×
0,4 referring to the dose that remains in the body; he also 
mentions that the first dose is 440, which implies that the 
second dose is 440 + (440 × 0,4). The second dose is 440 
since it refers to the new dose plus the remaining dose 
(D1). The next dose would be(D2 × 0,4)  +  176 +
 440 =  (440 × 0,4 × 0,4)  +  (440 × 0,4)  +  440 =
 440 × 0,42 + 440 × 0,4 + 440 = (440) (0,42 + 0,4 + 1). 

When Stu1continued this process, he observed that 
each time he had to multiply by 0,4; 60% of the medicine 
was filtered again, so that, by continuing this reasoning 
repeatedly, he identified that the value (0,4) was 
constantly repeated in each of the doses taken, which led 
to the restructuring and generalization of the problem 
through the procedure carried out in Figure 6, which 

subsequently allowed the use of the summation formula 
(already known from school). 

After the previous intervention, to corroborate that 
the solution given by Stu1 was feasible, the students took 
some examples, replaced them in the formula and 
compared them with the procedure performed term by 
term, i.e., without formula. The explanation made by Stu 
1 allowed his classmates to better understand the 
problem and to give more meaning to the word 
“filtration of the medication”. The previous event, 
supported by the explicit arguments given by Stu1, 
allowed several of his classmates to accept the solution, 
since they mentioned that he was right and that the 
procedure was coherent, since it considered the 
filtration, and complied with the cases taken by each one 
of them.  

The above reasoning is shown in diagram in Figure 7. 
From the previous schemes, we can see how Stu1’s 

need to explain the answer to the teacher and to his 

 
Figure 6. Stu1’s response 

 
Figure 7. Scheme of the explanation process of statement 1 from the new solution 
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classmates makes the student himself identify the error 
in his answer (Re, Figure 5). In addition, with the 
interventions of the other members of the group, the 
opportunity is given for rethinking the conjecture. 

Having clarity about the data referring to the 
behavior of the medications in the different intakes done 
every 8 hours, the student is oriented to continue with 
the iterative procedure until a generality is found. In the 
teacher’s and students’ interventions, rebuttals were 
evidenced (Re1 and Re2, Figure 7), which led the student 
to change his conjecture. This allows him to rethink the 
procedure performed and conclude C1 from theoretical 
rules, where the representation system composed by the 
numerical representation, the gestural and verbal 
language, and the algebraic language to represent the 
formula are evidenced. However, the control of the 
operators and of the process is carried out by the results 
of the calculator and the proof of the formula in the first 
values, which cannot be considered as a formal 
deductive demonstration, even though it is a good 
explanation of the solution of the problem. 

Justification Skill 

This skill is evidenced when students support, argue 
and explain whether a mathematical statement is true or 
false, and when answering whys of the process 
performed and conjectures made. This implies that the 
student convinces the teacher and his/her peers that the 

proposed reasoning is feasible to solve the problem; 
therefore, it is required to use propositions, 
mathematical properties, counter examples, reasoning 
and solid arguments that contribute to the veracity or 
refutation of the statements. An example of this skill is 
presented in Figure 8. 

Stu3: In answer a), the formula is 𝑣𝑣 =  5𝑥𝑥
2−𝑥𝑥3

2
 (Figure 

9). 
T: How did you get that result? (Figure 9). 
Stu3: First I realized that some right triangles are 

formed, so I am going to express that by the legs and 
relate it to the volume.  

Stu3: We know that the volume in this case is the area 
of the base times the height. So first we have to know 
which is this side (points to the left side) and the problem 
tells us that the big one is 5 and tells us that this one here 
(points to the right side) is also 5. So, to find the value of 
this one (points to the height of the inscribed prism) let’s call 
it x and here (points to the 3D Figure), to find the side that 
would be the height. 

If we see, they are related these sides (left over 2D 
Figure and highlighted in dark blue 3D Figure) are equal. 
(This, it does from the observed movement). 

Stu2: Wait, how so? It would not be with the other 
part (what is in light color).  

Stu3: No, look; I don’t know how to explain it. You 
see, when you move the slider, this distance (shown in the 
2D Figure) is equal to this distance (points to the 3D 
Figure), what is varying in this part (points to the dark blue 
color) are equal, because if we put it in two dimensions, 
here it would be zero and here too, the same with any 
other height that is parallel; for example, if you put all 
the height on the floor, it would be the same height of the 
prism.  

Stu3: So, I find that relationship between those two 
sides. So, the height would be h =  5 − x we already have 
a value to put it as a function of the other side. 

Stu2: But wait because ℎ = 5 − 𝑥𝑥 How so? 

 
Figure 8. Variation problem proposed to students 

 
Figure 9. Screenshot of the problem interpretation 
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Stu3: Because of what I have just explained. (Argue 
again using what was exposed and written on Zoom Screen 
Share (Figure 10).  

Stu3: Going back; then, we need the area of the base 
triangle. The area is equal to the base times the height 
times two. They are telling us that it is an isosceles 
triangle, so the height and the base are the same, we 

have: 𝐴𝐴 = 𝒃𝒃 × 𝒉𝒉 = 𝒙𝒙𝟐𝟐

𝟐𝟐
 so we just replace, everything is 

already a function of x (Figure 11).  

Thus, 𝑣𝑣 = 𝑥𝑥2

2
(5 − 𝑥𝑥) = 5𝑥𝑥2−𝑥𝑥3

2
 

Stu 1: Teacher, I also got to the same answer, I also did it 
this way.  

Stu4: But that would not be −𝑥𝑥3, it would be (5 − 𝑥𝑥)3 
Stu3: No, there we must do the multiplication term 

by term, that is, 𝑥𝑥2(5) and 𝑥𝑥2(−𝑥𝑥).  
Stu4: Umm… right, yes, I was wrong, sorry. 
That can be seen in the Figure 12.  
The answer given by Stu 3 shows the appropriate 

interpretation of the statement, which allows identifying 
the dependent and independent variables properly; also 
recognize the importance of expressing one variable as a 
function of the other. This leads to determine the data 
(D1, D2, D3, D4) that were the basis for the solution of 
the problem.  

Through dialogue, it is evident that the student uses 
different representations of the same mathematical 
object of study (numerical, gestural, natural language, 

algebraic) that allow him to: identify mathematical 
properties, use theoretical rules, reasoning and 
mathematical arguments to justify that his conjecture 
(𝑉𝑉 =  5𝑥𝑥

2−𝑥𝑥3

2
) is appropriate.  

From Re1 the student is oriented to the importance of 
justifying his answer and the procedure carried out, for 
this, the arguments given from R1 to R4 become a key 
piece, since they show that the student uses theoretical 
arguments such as the volume of a prism, area of a 
triangle, knowledge about the right triangle, which 
allow him to give a clear and concise solution to the 
problem, which is evidenced in C1. 

Argumentation Skill 

The argumentation skill is present in students when 
they want to convince themselves, peers or teachers that 
the actions performed contribute to the veracity of the 
conjecture. For this, explanations and justifications must 
be given by means of symbolic notations, 
representations, mathematical properties, verbal, 
graphic or written language, which allow understanding 
the idea to be transmitted. By means of activity N°1 of 
workshop 12 (Figure 13), it is intended to account for the 
argumentation skills acquired by the students in the 
precalculus laboratory course.  

Some students continue using the strategy of using 
particular cases to find the maximum area (inductive 
reasoning), they also use different representations, such 
as: graphing, tabular or numerical representation of the 
same mathematical object to conjecture about the 
relevant dimensions to find the rectangle with the largest 
area. Other students, from the beginning when taking 
particular cases, evidenced that the dimensions of the 
quadrilateral of the greater area is a square, however, not 
considering that a square can be a rectangle, they 
discarded this solution. It is worth noting that the 
students try to use a more solid mathematical language, 
however, they start from data that the problem does not 
provide, such as assuming that the base of the rectangle 
is twice the height and considering it as a square (Figure 
14). 

 
Figure 10. Screenshots Zoom Screen Share 

 
Figure 11. Screenshot of the solution of the problem 
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Faced with the process carried out by the student, 
many of his classmates disagreed, and invalidated the 
result, showing other values for the base and height of 
the rectangle that gave a larger area. Below, we present 
a small dialogue in which we show the previously 
mentioned. 

Stu5: I think my classmate did something wrong, 
because he takes it as if they are asking for a square in 
the solution. Just like that, he describes it by saying 
“knowing that the base of a square is twice the height” 
and the problem asks for a rectangle. Also, at no point 
does my classmate mention and (height). He also takes 

 
Figure 12. Scheme of the process of justification of the given problem (acknowledge theorist) 

 

 
Figure 13. Variation and change problem, activity 12.1, workshop 12 

 

 
Figure 14. Interpretation of the problem by a student 
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that all sides are equal and let’s remember that in the 
rectangle there are two unequal sides. Also, he is taking 
one of the sides as twice the other and we don’t know 
that the problem only gives us the perimeter. 

Stu2: Teacher, that is a hypothesis he has, but why 
the double? The problem doesn’t say. Besides, if one side 
is double the other it could not be a square as he 
mentions. 

Stu4: Teacher, but that hypothesis is not correct, 
because I found other values where the area is greater, 
the values that I took 4 and 3, because we know that the 
area of a rectangle is base times height, then, it doesn’t 
matter which of these magnitudes is the base or the 
height, because the result as area is the same, it is 12 and 
these magnitudes satisfy that 𝑃𝑃 =  14 = 4 + 4 + 3 + 3. 

From these conjectures and possible solutions, the 
following dialogue emerged:  

T: What is a rectangle, what is a square, is a square a 
rectangle, is a rectangle a square?  

Stu2: A square is a rectangle, but a rectangle is not 
always a square, because a rectangle is a four-sided, 
closed figure that has its sides parallel two by two, there 

is no restriction that says that in a rectangle two sides are 
unequal.  

Stu6: A square is not a rectangle, although the 
rectangle and the square are quadrilaterals because they 
have four sides, but in the square all its sides are equal, 
while in the rectangle it has different bases and heights.  

Stu2: No teacher, I don’t agree with them. I am still 
convinced that a square can be a rectangle, because in the 
definition of rectangle there is no restriction that they 
have to be unequal. 

It is proposed to the students to reflect on this 
concern, which will later be taken up for the solution of 
the problem. 

In Figure 15 we present the interpretation derived 
from the student’s solution.  

Resuming the problem, a group of students mentions 
that they obtained the same result as other classmates 
(solution a square), but that they did not do it using 
particular cases, rather they used a more generalized 
approach by assigning variables to the sides and clearing 
one variable as a function of the other, as evidenced in 
Figure 16 (students mention: teacher, there are two 

 
Figure 15. Scheme, argumentation process diagram 

 

 
Figure 16. Mathematical solution to activity 12.1 of workshop 12 
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solutions because it was worked in group section, but 
converge to the same thing would be to choose one). 

The explanation and justification of the students were 
the following: “to find the perimeter of a rectangle we 
use the formulas we already know, then we have that 
𝑝𝑝 =  2𝑥𝑥 + 2𝑦𝑦 = 14 where 𝑦𝑦 the base of the rectangle and 
𝑥𝑥 its height. From this equation, we clear 𝑦𝑦 as a function 
of 𝑥𝑥 and we have that 𝑦𝑦 = 14−2𝑋𝑋

2
= 7 − 𝑥𝑥, so the base is 

𝑦𝑦 =  7 −  𝑥𝑥 “ 
T: Why did you clear 𝑦𝑦 in terms of 𝑥𝑥? 
Stu1: To put all variables as a function of one 

variable, because then we can get the value of one side 
and find the area. 

Stu2: Teacher, besides, if we have everything in 
function of one variable, we could solve the problem 
easier, because in function of two variables it is very 
complex. 

Stu1: then we replace the variable 𝑦𝑦 in the formula to 
find the area of the rectangle, which is 𝐴𝐴 = (𝑥𝑥)(𝑦𝑦)then, 
we have 𝐴𝐴 = (𝑥𝑥)(7 − 𝑥𝑥) = 7𝑥𝑥 −  𝑥𝑥2 = −𝑥𝑥2 + 7𝑥𝑥. 

The previous function represents a parabola that 
opens downward, then the maximum area is found 
when we know the vertex of this parabola. Then, to find 
the vertex of the parabola we have that 𝑥𝑥 = − 𝑏𝑏

2𝑎𝑎
 knowing 

that b = 7 and a = -1 we can deduce that 𝑥𝑥 = −7
2(−1)

. Now 
replacing 𝑥𝑥 in the function found, we have that 𝐴𝐴 =

−�7
2
�
2

+ 7 �7
2
� = 12,25 

T: Why does the vertex of the parabola determine the 
maximum area?  

Stu6: Teacher, because the function is a parabola with 
a negative sign, that is, it opens downward so we have a 
maximum. If it opened upwards, we would have a 
minimum. 

T: So, what are the dimensions of the rectangle that 
are asked for? 

Stu3: Well, as we have already 𝑥𝑥 we know that 𝑦𝑦 =
7 − 𝑥𝑥 = 7 −  7

2
 = 7

2
. Then, 𝑥𝑥 = 𝑦𝑦 = 7

2
 that is a square. 

From the above, one of the students stated that the 
solution to the problem was a square, so a square could 
be a rectangle, because it was the one that was the largest 
area as we have already demonstrated, a situation that 
we present in Figure 17.  

 

From what was previously demostrated and from the 
schemes taught, the richness of the discussions that 
invite all the students in the group to expose and defend 
their ideas with a view to convincing the others, despite 
even the raising of erroneous conjectures, a fact that 
highlights the strength of strong inference and the 
potential refutations that validate or invalidate the 
operators of the conception, stands out, accounting, in 
this case, of abductive reasoning. Although a 
demonstration was not requested, in Margolinas terms, 
the procedure performed by the group of students also 
shows the validation skill that we will analyze in the next 
section, since the students are concerned with trying to 
know if the result obtained suits the problem posed 

 
Figure 17. Scheme of the argumentation process evidenced in the resolution of the problem 
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(Margolinas, 2009, p. 22), by analyzing the answer and 
checking with different values. 

Validation Skill  

Validation requires the student to give reasons, to 
justify his assertions and must be willing to defend them 
with the intention of convincing the peer group. 
Validation brings into play mutual sharing where the 
decisions taken are debated and the need to guarantee 
their validity or to denounce that one does not agree 
with the arguments of the other is manifested. Validation 
is characterized by the desire to give strength or firmness 
to what has been concluded, to make it valid. To 
demonstrate the above, we present the solution of some 
students to the activity No 11.1 of workshop 11, (Figure 
18). 

From the solutions given by the students it is 
observed that, in the first instance, they tend to solve the 
problem by assigning particular measures to the sheet. 
From this, they conjecture that the larger volume is 
obtained by using the smallest side of the sheet as the 
height, except when the sheet is square, since the 
volumes are equal. 

The particular examples allow students to make some 
conjectures, however, for them, this process was no 
longer sufficient, since they had acquired the ability to 
question themselves about the reason for the statements, 
in addition to the need to clearly argue that the 
conjecture was true for all values taken and not only for 
some specific cases, therefore, they try through more 
convincing theoretical arguments and mathematical 
properties to demonstrate the proposed conjecture. This 
means that the intervention begins to come to fruition, as 
a result of a systematic work from the implementation of 
the first activity, which involves the design and 
methodology of the course, together with the guidance 
of the teacher, promoting conjectures and the need to 
argue and validate with theoretical elements. This 
situation is evidenced by the following dialogue: 

Stu3: The same volume is obtained, since having 
equal sides in my square sheet gives the same result. 

Stu2: That is not true, teacher, the problem does not 
say that it is a square sheet. 

Stu3: I give this answer because in the exercise it tells 
us to take a sheet of paper, and a sheet of paper will 
always have the same measurements, so I do not 
understand why my answer cannot be valid? 

It is necessary to emphasize that this answer given by 
the student corresponds to item a, since the student 
started from a sheet with equal size. 

Stu2: because if we take a letter-size sheet of paper, it 
does not have the same horizontal and vertical sizes, if it 
were a square that has the same sizes on any side, then it 
does satisfy your conjecture. 

Stu7: I agree with my peer. Not all sheets are square, 
for example, if we take a legal sheet, it is clear that they 
are not the same dimensions. 

Stu3: Sure, I only took into account the square sheet, 
so, teacher, when you have a square sheet, it doesn’t 
matter how you take it, right? the volume is the same. 

T: Exactly. Now, what happens if you don’t have a 
square sheet? 

Students: Teacher, with the exercises we did, the 
largest volume is when the smallest side of the sheet is 
taken as the height. 

T: How could we prove that to be true for any sheet 
of paper taken? 

Stu7: We could do this by comparing the volume of 
the cylinder formula and the perimeter of the circle. 

T: How?  
Stu7: let’s say that the sheet is like this (Figure 19 on 

the left) on the shortest side I put a value of 5 and on the 
longest side I put a value of 10. Then we make the 
corresponding cylinder with a height of five and on the 
other side we make the other cylinder, but with a height 
of 10 (Figure 19 on the right). 

Now, to obtain the radius we put that the perimeter 
of the first cylinder is equal to 10, i.e., P = 2πr = 10 and 
to obtain the radius we clear, and we get that r = 10

2π
 

simplifying we get r = 5
π
 as we already have the radius, 

 
Figure 18. Variation and change problem, activity 11.1 of workshop 11 
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we can find the volume of that cylinder, using the 
formula V = πr2h replacing it we have V = π(5

π
)25 =

 39,789 (Figure 19). Doing the same procedure with the 
other cylinder with opposite dimensions we have that 
r = 5

2π
 and replacing r in the formula of the volume we 

get V = π( 5
2π

)210 =  19,894 (Figure 19) That’s all, so we 
could show it and if we want to generalize it would be 
to replace the dimensions 5 and 10 by any variable. So, 
we can see that when we take the shortest distance from 
the height of the cylinder, it gives us a considerably 
larger volume. This will always be true. 

Stu8: How do you know that it will always hold? 
Well, in that particular case it is fulfilling. But we already 
know that it is not enough that it fulfills for that one, we 
must see it in a general way, that is, for any sheet of 
paper that I take and of any dimension. 

Stu9: Applying what my classmate just did with 
other values will give us that it is true and that our 
conjecture is true for any value we take with that 
condition. 

T: How do we generalize and say that for everything 
it holds? 

Stu1: Teacher, teacher, let’s assign general variables 
(Figure 20) let’s say 𝑐𝑐 >  𝑏𝑏.  

If the circular base is formed with side c, and we 
follow the previous procedure, we have that 𝑉𝑉1 = 𝑏𝑏𝑐𝑐2

4𝜋𝜋
 

and if we form the circular base with b we have 𝑉𝑉2 = 𝑐𝑐𝑏𝑏2

4𝜋𝜋
. 

If we assume that c > b we can get the above because 
by multiplying both sides by b > 0 and c > 0, there is left 
𝑐𝑐2b > 𝑏𝑏2𝑐𝑐 and dividing by 4𝜋𝜋 on both sides we have that: 
𝑉𝑉1 = 𝑏𝑏𝑐𝑐2

4𝜋𝜋
 >  𝑉𝑉2 = 𝑐𝑐𝑏𝑏2

4𝜋𝜋
.  

Thus, from the students’ interactions and examples 
given through particular cases, they themselves manage 
to generalize why c and b can take any positive value. 
This allows them to demonstrate the conjecture they had 
raised, by applying the properties and solving the 
respective operations (Figure 20). 

Students: Well, teacher, what my partner says is true, 
and it is coherent with the particular examples we gave, 
that if would be the demonstration for any value we give 
to the variables b and c, besides, it is using mathematical 
properties that makes it always works. 

The previous dialogue and Figure 21 show that the 
students, starting from articular cases, managed to 
realize the error of statement 1 and demonstrate 
statement 2, because following the process they see there 
immersed some properties of the real numbers that 
allow them to operate easily, which is achieved in turn 
before the rebuttals Re1 to Re4.  

Likewise, since some students were not convinced of 
the processes carried out term by term, they requested 
that the conjecture be proved for a sheet of any 
dimension. This led them to think about the problem in 
terms of the use of variables, conditions and properties 
of real numbers, which finally helped them to identify 
the radius as a function of the length of its sides, 
subsequently replacing it in the volume equation and 
thus get the expected result. This episode explains the 
shift from a form of inductive reasoning to a form of 
deductive reasoning, which is essential for the 
construction of mathematical proofs. 

It should be noted that the different representations 
(numerical, geometric, algebraic, the use of natural and 
symbolic language) of the same mathematical object of 
study allowed students to generalize and establish some 

 
Figure 19. Screenshot of the procedure used for a base of 10 units and a height of 5 units 

 
Figure 20. Problem solving screenshot for a sheet of any dimension 
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conjectures, which allowed them to understand and 
solve the problem, as well as to realize these through the 
expressions and procedures carried out for the 
comparison of the volumes and thus convince the group 
of the veracity of the conjecture raised. This conviction is 
also manifested in the ability to successfully and 
functionally integrate or merge explanation, 
justification, argumentation and validation. 

Theoretical control supported by the formulas of 
volume of a cylinder and perimeter of a circumference, 
algebraic procedures and order properties of real 
numbers, is also evident, which allows them to construct 
a deductive demonstration, like a mental experiment. 
(Fiallo, 2011), based on the use of examples to remember 
mathematical properties and procedures, which he then 
uses as theoretical arguments (R3), without the need to 
return to the examples. 

CONCLUSIONS 
In this session we will present the emerging 

conclusions of the classroom intervention, for which we 
characterize the demonstration skills, based on the 
elements that make up Toulmin’s schemas, Pedemonte’s 
analysis model and the results evidenced in the different 
versions that the classroom intervention has been 
carried. 

Explanation Skill 

Explanation skill is characterized by the fact that the 
warrant is weak, there is no total conviction of the 
explaining learner, nor does he/she feel the need to 
convince others, which makes rebuttals not so relevant. 
The operators of the conception are usually examples of 
numerical calculations or of checking some properties in 
particular cases, the representation system is mainly 
composed of numerical or geometrical representations 
(according to the Douady (1986) framework of the 
problem), and there is a scarce use of the algebraic 
representation system; explanations are usually given in 
natural and gestural language. Because of this 
representation system, the control structure is based on 
checking, visualizing or calculating the results on the 
calculator or in the GeoGebra applet, as sufficient proof 
of the validity of the operators. Using Toulmin’s scheme, 
we propose the scheme in Figure 22 to characterize the 
explanation skill. 

In this skill we evidenced that when students did not 
understand the problem correctly, the explanation given 
to the solution of the problem was without solid 
arguments, and they did not have a logical construct of 
the ideas that allowed them to account for the veracity of 
their conjectures, which were giving new meaning 
through collaborative work and discussion between 
students and teacher that led to the construction of 
mathematical concepts, use of mathematical language, 

 
Figure 21. Scheme of the Toulmin model (date) for the validation process 
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given the interest that the other peer understood what 
was being explained. 

Justification Skill 

In justification, the qualifier has a greater probability 
of certainty due to the need to give reasons for the 
conjecture (Jorba, Gómez y Prat, 1998; Rigo, Rojano & 
Pluvinage, 2011), which leads to the use of operators, 
generally based on procedures, algorithms and 
counterexamples, because rebuttals become relevant in 
this skill. In the representation system there is a greater 
use of the algebraic representation system and there is 
evidence of a first attempt at coordination Duval (2004) 
between the different representation systems, use is 
made of graphics in the Cartesian plane and the control 
structure of the operators is based on the results of 
procedures, algorithms, formulas and graphics. There is 
a more controlled use of GeoGebra applets by students 
to verify their arguments.  

Using Toulmin’s scheme, we propose the following 
scheme (Figure 23) to characterize the justification skill. 
This was one of the skills that was developed to a greater 
extent, through the moments of sharing answers and 
concerns, since when the students provided an answer 
and their classmates disagreed, they were referred to ask 
about the why of the statements made. This situation led 
them to rethink their justifications and relate the 
different representations (graphical, numerical, 
algebraic) of a mathematical object that allowed them to 
show the variation between two variables, dependence 

and independence, compare data from a table with those 
obtained in an algebraic expression, among others.  

Argumentation Skill 

The argumentation skill is characterized by the 
degree to which the speaker is convinced of the veracity 
of his conjecture (even if it is false) and the desire to 
convince others (Pedemonte, 2002), so that rebuttals 
become more relevant.  

In accordance with the above, due to the high degree 
of discussion generated by promoting the 
argumentation skill, all members of the group were 
attentive and asked questions questioning the operators 
of the conception, characterized by the use of theoretical 
rules and mathematical properties and a coordination 
Duval (2004) between different representation systems, 
including executable representations, and a theoretical 
control structure based on adequate and accepted 
mathematical procedures and properties. 

There is a controlled use of GeoGebra applets by 
students to test conjectures, ideas, explore and find 
properties. Using Toulmin’s scheme, we propose the 
scheme in Figure 24 to characterize the argumentation 
skill. 

We evidenced a significant progress in the 
argumentation and justification by the students in 
solving problems of variation and change, since it was 
no longer enough for them to take some particular cases 
that showed the veracity of the conjectures and algebraic 
expressions found, but they were concerned about 

 
Figure 22. Scheme of the Toulmin model (date) for explanation skill 

 
Figure 23. Scheme of Toulmin’s model (date) for justification skill 
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arguing from the theory the proposed results, as 
evidenced in the previously mentioned situations. 
Likewise, the use of a more adequate mathematical 
language to refer to the objects involved in the problem 
(variables, equations, functions, among others) is 
perceived. 

Validation Skill 

In the validation skill, in addition to what is exposed 
in the other skills, which could be considered as 
ascending levels, the outstanding element of Toulmin’s 
scheme is the Backing (B), characterized by the ability to 
coordinate all the representation systems necessary for 
the solution of the problem and a control structure based 
on definitions, axioms, theorems and appropriate 
mathematical procedures. The use of GeoGebra applets 
makes it possible to visualize, understand, validate and 
coordinate the different representation systems of the 
software to guarantee the validity of the arguments. 

Taking into account Margolinas’s (2009) viewpoint, 
although validation should not necessarily be linked to 
demonstration, we argue that giving an answer to a 
problem, even with an adequate mathematical 
procedure, could be considered a demonstration in the 
framework of calculus, since the operators of the 
conception and the theoretical and procedural support 

give veracity and validity to the conjectures raised and 
ensure the degree of conviction of all members of the 
group. Using Toulmin’s scheme, we propose the 
following scheme (Figure 25) to characterize the 
validation skill. 

The analysis of the four skills consolidated in the four 
schemes is taken as a proposal, a product of this research 
based on a classroom intervention of several years. It is 
suggested that in order to understand and be able to 
perform mathematical demonstrations of the most 
important theorems of calculus, it is necessary to 
promote these skills, recognizing in them a hierarchical 
order that progresses from explanation to validation.  

The analysis of the four problems presented above 
shows the development of the demonstration skill 
through problems of variation and change, since 
through the explanation, justification, argumentation 
and validation skills, students move between particular 
examples to generalize and subsequently demonstrate 
mathematically that the conjecture presented is true. 

FINAL REFLECTIONS 
The experimentation with the precalculus course, the 

context of the study from which this article is extracted, 
has been developed over nine years with twelve cohorts 
of undergraduate students of science and engineering. 

 
Figure 24. Scheme of Toulmin’s model (date) for argumentation skill 

 
Figure 25. Scheme of the Toulmin model for the validation skill 
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Such experimentation, has allowed us to build 
theoretical and practical knowledge, from which 
different research products have emerged that are 
summarized in Fiallo & Parada (2018). For mathematics 
educators who want to follow this path of reflection and 
research, from other areas of mathematics, it is suggested 
to critically analyze the purposes of learning and 
privilege mathematical processes rather than objects of 
study, problematizing around interesting and useful 
situations for students. 

On the other hand, although we consider that the 
skills of the demonstration process identified through 
the precalculus laboratory course could be evidenced in 
other courses, we must be honest in saying that we have 
not done research from other fields of mathematics. 
However, we admit that there is a very fertile field to 
explore and that we have the obligation to venture into 
them, in order to contribute to the mathematical 
education of the new generations. 
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