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Current school curriculum documents require that justification and proof become a 
significant part of the mathematics classroom culture. In order to determine how well 
secondary level student teachers can complete a valid mathematical proof the researcher 
administered, the same mathematical task of Balacheff (1988) to a group of student 
teachers who were at the last semester of their teacher education program. The student 
teachers’ written responses were then classified using Balacheff’s Taxonomy of Proofs 
(BToMP). To assist in classifying student teachers’ work, the researcher generated 
examples corresponding to Balacheff’s taxonomy of proof. The purpose of this article is 
to confront the results of Balacheff and also to determine the various levels of proficiency 
with which the student teachers approached the task on the basis of BToMP. Along with 
the analysis of the results, the difficulties that the researcher encountered in categorizing 
student teachers’ written work according to BToMP, for the same task he administered in 
his study is also discussed in this article This study raises questions concerning the 
applicability of BToMP, especially with advanced level students who have preconceived 
ideas about what would constitute a “preferred” approach to the proving task. It also 
suggests a need for further research into the thought processes and cognitive skills that are 
necessary, no matter what one’s age, in solving mathematical proof tasks 
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INTRODUCTION  

Knuth (1999, 2002 a, 2002b) has noted that 
mathematical proof has played a peripheral role at best 
in North American secondary school mathematics 
education. He also observed that teachers introduce 
students to mathematical proof solely through the 
vehicle of Euclidean geometry. Several other researchers 
also noted the same phenomenon (Mariotti, 2000; 
Marrades & Gutierrez, 2000; Moore, 1994; Solomon, 
2006; Sowder & Harel, 1998; Usiskin, 1987).  Given this 
narrow application, the teaching and learning of 

mathematical proof does not appear to be that 
successful (Chazan, 1993; Coe & Ruthven, 1994; Healy 
& Hoyles, 2000; Hadas, Hershkowitz & Schwarz, 2000, 
Weber, 2001) in North America. 

Curriculum documents published by National 
Council of Teachers of Mathematics (NCTM), a US 
based teacher association, stipulated that justification 
and proof are to become a significant part of 
mathematics classroom culture (NCTM, 1991 & 2000).  
This will be a challenging mandate. Jones (1997) notes 
that the teaching of mathematical proof places 
significant demands on the subject matter knowledge 
and the pedagogical knowledge of secondary 
mathematics teachers; and Knuth (2002 a, 2002b) insists 
that a teacher’s conception of proof will influence both 
the role that mathematical proof comes to play within 
that teacher’s classroom and the manner in which it is 
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taught. His study with secondary school mathematics 
teachers found that even practicing teachers have only 
minimal knowledge about the role and function of 
mathematical proof within the mathematics classroom. 
If teachers themselves lack the necessary mathematical 
understanding to feel secure in their instruction of a 
concept, it is quite natural that it will not receive the 
emphasis that curriculum developers would wish, nor 
the instructional time that curriculum documents 
stipulate. 

This article presents the analysis of the replication of 
an existing research with secondary school student 
teachers conducted in a large Canadian University. 
Balacheff (1988) proof task was administered to a group 
of 17 secondary (math major) student teachers.  The 
purpose of this study was to confront the results of 
Balacheff and also to determine the various levels of 
proficiency with which these student teachers approach 
the task on the basis of Balacheff’s Taxonomy of 
Mathematical Proof (BToMP). Along with the analysis 
of  my results, the difficulties that the researcher 
encountered in categorizing student teachers’ written 
work according to BToMP, for the same task he 
administered in his study is also discussed in this article. 
The tasks was administered at a point when most of the 

student teachers were in the final semester of their 
teacher education program; in two weeks time all were 
off to complete their final teaching practicum. 

BALACHEFF’S STUDY 

Balacheff based his 1988 study on the mathematical 
practices of secondary school students as they 
encountered mathematical proof. He took an 
experimental approach that allowed him to observe 
twenty-eight thirteen and fourteen-year olds as they 
worked in pairs to generate proofs.  The students were 
asked to “provide a means of calculating the number of diagonals 
of a polygon when you know the number of vertices it has” (p. 
221). Balacheff facilitated interaction between the 
partners by providing only one pen for each pair. 
Students were allowed to work on the problem until 
they arrived at a solution; but both students had to agree 
that their answer did, in fact, provide a solution to the 
problem before they could claim to have finished. In this 
study, Balacheff focused on both the reasons that 
students gave for selecting the examples that they did 
and how they used those examples. He was keen to 
understand the processes involved in arriving at the 
product, but he understood that social interaction could 
either assist or hinder students in arriving at a solution 
to the proof (p. 222). After analyzing the results, 
Balacheff classified the student responses into four 
different types of proofs and argued that these 
categories represented four increasingly sophisticated 
levels of thinking. 

Actually, it is in the “Proofs of Refutations” 
(Lakatos, 1976) that one can find the origin of the 
BToMP. It is also important to notice that BToMP is 
based on (i) the theory of didatical situations (which led 
to the experimental design), (ii) the Lakatos’s 
preposition about the epistemology of proof (which 
establishes a link between proving and knowing) and 
(iii) Piaget genetic epistemology (which allows shaping 
possible precursor of mathematical proof). 

Almost a decade later, Simon & Blume (1996) argued 
that Balacheff (1988)’s hierarchy of proofs was, in fact, 
an extension of van Dormolen’s (1977) taxonomy of 
proof (as cited in Simon & Blume, 1996).  According to 
Simon & Blume, van Dormolen had differentiated 
among proofs by establishing three distinct categories: 
proofs that (1) focus on a particular example, (2) use an 
example as a generic embodiment of a concept, and (3) 
use general and deductive argument. Balacheff identified 
four categories of proofs with his taxonomy: (1) naïve 
empiricism, (2) crucial experiment, (3) generic example 
and (4) thought experiment. Balacheff argued that each 
of these four levels of mathematical proof could be 
classified within one of two broad categories that he 
termed pragmatic justifications and conceptual 
justifications. He called all justifications pragmatic when 

State of the literature 

• Balacheff based his 1988 study on the 
mathematical practices of secondary school 
students as they encountered mathematical proof  

• He took an experimental approach that allowed 
him to observe 28 children while performing a 
proof task 

• The student responses were classified into four 
different types of proofs and argued that these 
categories represented four increasingly 
sophisticated level of thinking 

• Balacheff (1988) reasoned that students’ 
understandings of mathematical justification are 
likely to proceed from the inductive toward the 
deductive and toward greater generality 

Contribution of this paper to the literature 

• This study was conducted among student teachers 
who were in the last year of their Bachelor of 
Education program 

• The responses were classified according to 
Balacheff’s Taxonomy of Proofs 

• The paper examines the difficulties encountered in 
the categorization of the responses 

• It is also noted that despite the neatness of well 
defined categories, it is always not so easy to 
categorize the proofs under this taxonomy 
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they focused on the use of examples, actions or 
showings.  He called justifications conceptual when they 
demonstrated abstract formulations of properties and 
relationships among properties.  

The first three levels in Balacheff’s proof scheme are 
all examples of pragmatic justifications.  In the case of 
naïve empiricism, the first level in Balacheff’s taxonomy of 
proofs, the student arrives at a conclusion concerning 
the validity of an assertion on the basis of only a small 
number of particular cases. Balacheff exemplifies this 
level in his description of the efforts of school students 
Pierre and Mathieu. Working together, these boys 
examined a square, a hexagon and then an octagon. 
They concluded that they could arrive at the number of 
diagonals by dividing the number of vertices by two. In 
this example of naive empiricism, the boys checked the 
statement to be proved against a few particular 
examples and, on this basis, made a universal assertion.  
With crucial experiment—the second level in Balacheff’s 
taxonomy of proofs—the student deals with the 
question of generalization after generating a claim based 
on a few examples by examining a case that is not very 
particular. If the assertion holds in the considered case, 
the student will conclude that it is valid. Balacheff 
illustrated critical experiment by referring to the efforts 
of Nadine and Elisabeth. These girls chose a polygon of 
many sides (15) believing that the assertion they came 
up with could be proved in this instance, then the 
assertion would be universally true. In other words, at 
the level of crucial experiment, the student checks the 
statement by means of a carefully selected example.  A 
defining characteristic of crucial experiment is the 
intentionality of the student. In other words, deliberate 
choices must be made (Knuth & Elliot, 1998) in the 
selection of an example.  

Notably, both naïve empiricism and crucial 
experiment deal with actual actions or showings; the 
main difference between the two rests with the status of 
the specific example that is selected to validate the 
assertion—the example used in crucial experiment 
proof is often based on carefully selected extreme cases. 
I came to know through my work that one is more able 
to distinguish between crucial experiment and generic 
example while observing the student as s/he actually 
works through the task.  

In the case of generic example—the third level in 
Balacheff’s taxonomy of proofs—the proof rests upon 
the properties. Here, the example is a generalization of a 
class, not a specific example. Although the focus is once 
again a particular case, it is not used as a particular case, 
but as an example of a class of objects. The student 
selects such an example as representative of the class 
and performs operations/transformations on the 
example in order to arrive at a justification. Then, the 
student applies these operations and transformations to 
the whole class. Balacheff mentions Georges’ 

exploration of the proposition f(n) = n*s(n) (where s(n) 
is the number of diagonals at each vertex) as an example 
corresponding to this category. However, it is quite 
interesting to note that Balacheff is not explicit in 
explaining his reasoning as to why this should represent 
a generic example (see Balacheff, 1988, pp. 224-225). 

Only with the fourth and highest level of proof in 
Balacheff’s taxonomy do students move from the 
practical—pragmatic justification—to the intellectual—
conceptual justification. At the level of thought experiment, 
students are able to distance themselves from action and 
make logical deductions based only upon an awareness 
of the properties and the relationships characteristic of 
the situation. At this level, actions are internalized and 
dissociated from the specific examples considered. The 
justification is based on the use of and transformation 
of formalized symbolic expressions. Balacheff provides 
an example of thought experiment in his description of 
Olivier. This student asserted that “In a polygon if you have 
x vertices there are automatically y diagonals from each point 
because in a boundary of the polygon there are two points which 
join it; in conclusion there are x-3 which are the diagonals”.  
Olivier was able to express the properties of a polygon 
by observing one specific example. It is important to 
note that Balacheff categorized all assertions that de-
contextualize themselves from the traces of formulation 
of their arguments, even if not necessarily fully correct, 
as thought experiments. In other words, it is the 
students’ approach to the task of proving that he is 
categorizing not the validity of the outcome. 

Knuth & Elliott (1998) explored BToMP further by 
providing examples to demonstrate each of the four 
levels of thinking.  They used power chord theorem in 
their efforts to show how students thinking at any one 
of these levels might approach the task of proving the 
proof.  In examining both Balacheff (1988)’s original 
study and the work of Knuth and Elliott, it has become 
clear to me that distinguishing between naive 
empiricism and crucial experiment is a difficult task, 
especially if one looks only at the end product of the 
student’s engagement with the task. One could also 
observe that Knuth and Elliott did not provide a 
concrete instance of generic example. Hence, despite 
the neatness of the Balacheff model, in practical 
application one may have some difficulty both in 
distinguishing between naive empiricism and crucial 
experiment and in coming across instances of generic 
example.   

Stylinadies (2007) provides an example of student 
argument, categorizing it as generic argument. 
Stylinadies phrased the students’ argument as follows: 

“If I take a number, say 200, and subtract it from 
itself, I get 0. Then if I add 10 to 0, I get 10. Because the 
same will hold for any number I choose to begin with, 
and because there is an infinite set of numbers I can 
choose from, there is an infinite number of answers I 
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can choose from, there is an infinite number of answers 
for the problem “write number sentences that equal 
10”. (p. 312) 

If the student had just written 200-200+10 = 10, and 
hence noted  “there are infinite number sentences for 
10”, that could have been considered as a “naïve 
empiricism with a single example –and not a generic 
example. One could also argue that, as the study 
participants are primary school children, 200 is a “big 
number” to them, and hence “200” can be considered 
as an “extreme example”, one that was “intentionally 
chosen”. Then it could easily fit under the “crucial 
experiment” category.  However, because of the explicit 
argument “the same will hold for any number I choose to begin 
with, and because there is an infinite set of numbers I can choose 
from, there is an infinite number of answers I can choose from, 
there is an infinite number of answers for the problem”, 
(emphasis added) this argument could be clearly 
categorized as a generic example. This is the difficulty 
with most of the student’s written work. Unless clearly 
indicated, a researcher can draw only limited 
conclusions based on the work alone. 

The four levels in BToMP represent a hierarchy 
through which students are expected to progress as their 
notions of mathematical justification develop. Balacheff 
(1988) reasoned that students’ understandings of 
mathematical justification are likely to proceed from the 
inductive toward the deductive and toward greater 
generality.  Hence, those with increased mathematical 
maturity are most likely to be the students who generate 
deductive proofs. He also stressed that students will 
move back and forth between inductive and deductive 
reasoning depending on the task that they are 
completing. In other words, a student capable of 
thought experiment in one situation may regress to 
naïve empiricism in another.  

The Study 

Balacheff (1988)’s study centered on the learning of 
mathematical proof; the presented study began with an 
investigation of the learning of mathematical proof with 
the aim of ultimately enhancing the teaching of 
mathematical proof.  The proficiency levels of student 
teachers who were asked to construct valid 
mathematical proof, were first examined; but because 
one’s proficiency at a task is likely to influence the way 
in which one later instructs that task (Kunth, 2002a; 
Jones, 1997), the reseracher saw a critical relationship 
between proficiency and confidence: highly proficient 
learners of mathematical proof are likely to become 
more confident teachers of mathematical proof.  It is 
commonly believed that a teacher’s confidence in, and 
outlook on, mathematical proof will shape his/her 
teaching of these concepts (Fennema & Franke, 1992; 
Thompson, 1984). 

The participants were informed ahead of time the 
objective of administering this task. A week after the 
information session, the task was administered. Of the 
20 students present in the class, 3 decided not to 
participate in the study.  The ethics committee of the 
University had approved the study.  This study group 
consists of 17 Mathematics (major) students in the final 
semester of a teacher education program at a Canadian 
university. The teacher education in this particular 
university consists of either a 5 year combined program 
or a six year (after-degree) program. In the six-year 
program, students who had successfully completed a 
relevant first degree then applied to complete a 2-year 
BEd (Bachelor of Education) degree. For specialization 
in a secondary school subject, students must have had 
complete at least 12 three-credit courses in their subject 
of specialization. Hence, the participants of this study 
had completed a minimum of 12 university mathematics 
courses, including two courses in calculus as well as 
courses in geometry, linear algebra and abstract algebra.               

ANTICIPATED PROOF CATEGORIES  

In the following section, examples of how one might 
successfully complete the task “provide a means of 
calculating the number of diagonals of a polygon when you know 
the number of vertices it has” in accordance with BToMP is 
provided. The researcher noted that it is quite 
challenging to generate examples that would illustrate 
the various levels of thinking in this hierarchy of proofs. 
In particular, as noted before, it was difficult to generate 
illustrative examples of the approach categorized as 
generic example. The researcher understood from this 
study that unless the student uses some extreme 
examples (like a very large number or a polygon with a 
very many sides), or the student specifically mentions 
(aloud during the process or, perhaps, in writing) that 
the example is intentionally selected, it is quite difficult to 
differentiate between naïve empiricism and crucial 
experiment on the basis of written work alone. 
Balacheff’s categories focus on the type of argument 
that the student presents rather than on whether or not 
the argument itself is correct; however, both factors are 
taken into consideration in the analysis of this article. 
First, the type of argument that the student has used is 
examined; and second, the success, or lack of success 
that the student has achieved in applying that argument 
is noted. 

Exemplars 

In the following section, exemplars corresponding to 
Balacheff’s taxonomy of proof for the task: “provide a 
means of calculating the number of diagonals of a polygon when 
you know the number of vertices it has” is provided. 
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1.  Approach: Naïve Empiricism  

A rectangle has four vertices and two diagonals. 
 

Vertices    =   v   = 4 
Diagonals  =   d  = 2 

 
 
 
 
 
 
 
 

A pentagon has five sides and five diagonals. 
 
 
 
 
 
 
 

Vertices    =   v  = 4 
Diagonals  =   d  = 2 

 
Hence, if “v” is even, the number of diagonals d = v / 2. 
And if  “v” is odd, the number of diagonals d = v. 

2. Approach: Crucial Experiment  

Balacheff (1988) distinguishes between crucial 
experiment and naïve empiricism on the basis of the 
student’s selection of the example. Both Balacheff 
(1988, 1991) and Knuth & Elliot (1998) note that 
students at the level of crucial experiment intentionally 
select an extreme case, and if the proof works for that 
example, they will then conclude that their conjecture is 
correct and the proof proved. Thus, this task at the level 
of crucial experiment can be approached in the 
following manner. 

 I conjecture that the # of diagonals = # of vertices 
and will use the extreme case of the pentagon to verify 
my conjecture. I use the pentagon (as an extreme case) 
because it is the polygon with the greatest number of 
sides that I can still draw with relative ease.  

A pentagon has five sides and five diagonals 
 
 
 
 
 
 
 

vertices    =   v  = 5 
diagonals  =   d  = 5 
Hence d = v 

3. Approach: Generic Example 

The pentagon has five sides and five diagonals. 
 
 
 
 
 
 
 
 

Vertices    =   v  = 5 
Diagonals  =   d  = 5 

 
A pentagon has 5 sides (n = 5) and so 5 vertices (v = 

5).  From each vertex, one can draw only 2 diagonals 
because there are no diagonals from a vertex back to 
itself and there are no diagonals to the vertices on either 
side. Thus, there will be three fewer diagonals than the 
total number of sides (namely 2 at each vertex). Since 
there are 5 sides and 5 vertices, one can draw 5* 2 (= 
10) diagonals in total. Diagonals have two ends; 
counting both ends of the same diagonal one would 
arrive at a total of 10. However, only one end needs to 
be counted. So, the number of diagonals will be 10 by 2, 
which equals the number of vertices. 

This exemplar illustrates reasoning at the level of 
generic example because the calculations and answers 
are specific to the fact that one is considering a 
pentagon, although the same reasoning would apply 
whatever the number of sides involved. As noted above, 
Balacheff’s (1988, 1991) example on generic reasoning 
does not include explicit rationales as to why the 
example constitutes the particular level of reasoning. 
When Knuth and Elliot (1998) expounded on 
Balacheff’s proof levels using power chord theorem they also 
did not provide an explicit example and explained their 
rationale for their choice of illustration concerning 
generic example. Perhaps, one of the difficulties here 
lies in the specific problem task that Balacheff selected 
for his study (and which is the task for this study too):  
maybe it is simply too difficult to find a representative 
polygon that will work for all the different polygons of 
the same number of sides and all the different polygons. 
In other words, generic reasoning is easily verbalized, 
but when it is expressed on paper, it needs to be 
explained semantically in writing in order for one to 
assess the nature of the reasoning.  

4. Approach: Thought Experiment 

Arguing from the specific to the general 
distinguishes the generic example from the thought 
experiment. See the exemplar below: 

Consider a polygon with “v” sides. If there are “v” 
sides, there are “v” vertices. Beginning with each vertex, 
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one can draw (v - 3) (again, recall that there is no 
diagonal from a vertex back to itself and there are no 
diagonals to the vertices on either side). Thus, there will 
be three fewer diagonals than the total number of 
sides—that is, (v - 3) diagonals from each vertex. As 
there are “v” sides, there will be a total of v(v - 3) 
diagonals. This approach, however, counts both ends of 
the diagonal. That means each diagonal is counted 
twice. Hence, to get the correct number of diagonals, 
divide the product by 2. Therefore, the formula for the 
number of diagonals is d = v(v - 3) / 2.  

 Analysis of the Task 

As noted before, Balacheff (1988) did not take into 
consideration the correctness or incorrectness of the 
mathematical proof when placing it at a particular level 
of reasoning.   However, student’s work can be 
classified in one of three ways: as fully mathematically 
correct; as partially mathematically correct; and as 
mathematically incorrect. In this study, student efforts 
are categorized as correct only if the work is fully 
mathematically correct. In the case of this particular 
proof task (as noted above), the work of the two 
students who took the approach of naive empiricism 
can only be categorized as partially correct. (Knuth 
(1999), in his study, classed all proofs under the category 
of  “naïve empiricism” as invalid.) In the analysis of this 
article, divide the thought experiment proofs into two 
categories a) verbal and b) symbolic. All efforts that are 
sophisticated: in other words, proofs that are enriched 
by the use of algebra or axioms or any other type of 
formalism and there is a minimal use of natural language 
(an example is provided later), are classified as thought 
experiment-symbolic. Since Balacheff’s study group had 
limited exposure to mathematical proof, the examples of 
thought experiment in Balacheff’s (1988) study are not 
very mathematical but verbal. In contrast, the present 
study group consisted of adults who could be 
considered mathematically sophisticated. Not 
surprisingly, then, they seem to have an image of proof 

form in mind. Hence, an additional category of 
“thought experiment-symbolic” is included.  

From the table above, it can be noted that only 6 
students out of 13 (4 provided correct formulas) were 
able to provide correct proof for the given task.  
Notably, other studies (Chazan, 1993, Coe & Ruthven, 
1994, Healy & Hoyles, 2000; Weber 2001, Knuth, 
2002a, 2002b) report that study participants found it 
difficult to complete correct proofs. When asked about 
their difficulties, most students pointed towards their 
experience with proof in secondary school. In secondary 
school mathematics, they experienced proof as 
compartmentalized within the domain of “Euclidean 
geometry”. They also referred to a “discontinuity” 
between their proof experiences in secondary and post 
secondary schools. Generally in schools, students see 
proof as a “formal meaningless exercise”, acquired by 
means of memory or the “received wisdom” bestowed 
upon them by their teachers. When they arrive at post 
secondary school, it is quite natural that they feel 
overwhelmed. What they had formerly little experience 
of was now presented as central to a mathematics 
education.   

STUDENT WORK: PROOF CATEGORIES 

In the following section, examples from student 
work that illustrate the different levels of mathematical 
reasoning as pertains to solving proof for Balacheff’s 
(1988) task is presented. This task, then, involves the 
use of the definition of  “diagonal”.  A majority of the 
students tried to solve the proof by using the definition. 
They examined various polygons in terms of their 
properties and gave an intuitive argument. This 
indicated that these student teachers had the conceptual 
tools needed to justify their argument. All of the student 
teachers worked with convex polygons as well, even 
though this was not a requirement stated in the 
question. This is similar to what Balacheff observed in 
his study. 

Table 1. Observations from student work  
Categories     Correct Partially Correct  Failed  Total 

Formula Only 4 0 0 4 
Naïve Empiricism 0 2 0 2 
Generic Example 2 1 0 3 
Thought Experiment- verbal 3 0 3 6 
Thought Experiment -symbolic 1 1 0 2 
Total 10 2 3 17 
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The following sections discuss examples that 
illustrate Naïve Empiricism, Generic Example and 
Thought Experiment. It is to be noted that there were 

not any student work for this particular task that could 
be categorized as a “crucial experiment”. The below 
given student names are all pseudonyms. 

 
Figure 1. Tahira’s solution 
 

 
Figure 2. Grace’s solution 
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Naïve Empiricism 

Tahira explored(figure 1) three polygons—a square, 
a pentagon and a hexagon. She wrongly counted the 
number of diagonals for the pentagon and the hexagon; 
however, her incorrect counting fitted her conjecture 

very well since  “If even 2
n

, if odd then  
1

2
n +

 would be # [of] vertices”. There is another 
error in her conjecture.  The question asks that she 
provide a means for calculating the number of 
diagonals, given the vertices. However, it seems that in 
her answer she provides a means for calculating the 
number of vertices. Her approach to proof suggests the 
first category in Balacheff’s taxonomy as she explores a 
few polygons and comes up with a conjecture that she 
assumes to be true for all cases.   This effort can be 
categorized as naïve empiricism. One could notice that 
Tahira’s proof is similar to what Balacheff (1988) noted 
as Pierre and Mathieu’s proof. 

Generic Example 

Assuming that she worked from top left to bottom 
right, Grace (figure 2) counted the number of diagonals 
for the pentagon and found it to be 5. She notes on the 
page, the number of diagonals next to the pentagon 
figure. Then, she seems to have moved to the triangle, 
noting that the number of diagonals is 0. Next, she 
likely drew a square and counted the number of 
diagonals, but did not bother to note the number. Then 
she moved to a hexagon and counted the number of 
diagonals correctly. She drew a heptagon and tried to 
count the number of diagonals, but left it undone. At 
that point, she seems to have tried an “extreme” 
polygon with 12 sides. However, she may have realized 
that it is not an easy job to count the number of 
diagonals of a 12-sided polygon. Whatever the reason, 
she left it undone after drawing only a few diagonals. It 
is apparent that she was trying to spot a pattern that 
would allow her to predict further results. Generating 
examples, looking for regularities in the data, making 
and articulating conjectures are the first steps towards 
generalization (Rowland, 2001).  

It can be noted that Grace also draws another 
hexagon, bigger in size than the others, and with all the 
diagonals correct. This suggests that she returned to the 
hexagon and drew a larger diagram in order to make 
sense of the structure. This time she did not simply 
count the number of diagonals arriving at a sum of 9; 
instead, she wrote the structure as 3, 3, 2, 1. Since there 
are six sides in a hexagon there will be six vertices  (v = 
6); hence (v – 3)  =  (6-3)  = 3 (there are two “3s” in the 

formula, “(v - 3) + (v - 3)”). The next number in her 
structure is “2”, which agrees with her proposition “v - 
4” = 6-4 and so on. “3 + 3 + 2 + 1” will yield the same 
result as “3 + 3 + 2 + 1 + 0”; hence, the formula is (v - 
3) + (v - 3) + (v - 4) + …+ (v - v) where “v - v” is 0. One 
could conjecture that she was attending to the hexagon 
when she wrote the formula. In other words, she uses 
the hexagon as a generic example in order to reach the 
general structure and the formula  

(v - 3) + (v - 3) + (v - 4) + …+ (v - v).  It can be 
reasonably assumed that after she generated the formula 
for the number of diagonals, she wrote a partially 
complete general argument “v-3 to remove lines to itself 
[sic] or adjacent vertices. This is twice to reach all 
vertices once and then the lines start to repeat”. Her 
argument is quite unclear to the researcher. One could 
suspect that she was trying to explain how she arrived at 
the formula.  

Graces’ work does not fit neatly into the category of 
generic example; furthermore, it contains traces of 
thought experiment This is the case with almost of the 
student work produced: if students experienced 
advanced level mathematics courses in which they 
became familiar with the form and elements of proof, 
then it makes sense that there will be traces of thought 
experiment in all of their proof forms. 

Thought Experiment - Verbal 

Chandelle (figure 3) tried 3 different polygons—
square, pentagon and hexagon—in her efforts to make 
sense of the problem. She counted the vertices and the 
number of diagonals for each of these three polygons. 
Once she acquired a sense of the problem and the 
structure for generalization, she arrived at and justified a 
formula. She then verified her formula to determine 
whether or not she had arrived at the correct one. Since 
Chandelle uses the same examples that she had used 
earlier to explore the problem, I infer that she is now 
engaged in verification. Jahnke (2005) notes that some 
students will verify a statement, even after it has been 
proved, by means of examples (an observation, he 
claims, made also by Fischbein [1982]). I categorized 
this proof as a correct verbal thought experiment 
because Chandelle had developed a general explanation 
detached from the specifics of all her individual 
examples.  

Thought Experiment - Symbolic 

George (figure 4) made sense of the problem with 
the help of a triangle, square, pentagon, hexagon and 
heptagon. Even though he fails to specify his variables, 
it is evident that “v” stands for the vertices and “d” for 
the diagonals. The triangle does not have a diagonal; 
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hence, v = 3 and d = 0. Regarding the square, v = 4 and 
d = 2. The curved arrow pointing downwards and the 
+2 next to it indicate the difference in the number of 
diagonals between the triangle above and the square 
below. This pattern repeats with each new figure as the 
mathematical work proceeds down the page.  When he 
arrives at the pentagon, he represents the number of 
vertices as v = 5 and the number of diagonals as d = 5. 
The difference in the number of diagonals between the 
square and the pentagon is 3; hence, he wrote +3. In the 
case of the hexagon, v = 6 and d = 9. The difference in 
the number of diagonals between the pentagon and 

hexagon is 4; hence, he wrote +4. In the case of the 
heptagon, v = 7 and d = 14. The difference in the 
number of diagonals between the hexagon and 
heptagon is 5; hence, he wrote +5.  At the right hand 
side he writes  “0”, “0.5”,  “1”, and  “1.5” in an effort to 
establish a relation between vertices and diagonals. The 
pattern is provided below: 

For triangle  –  0v  = d 
Square        –  ½ v  = d 
Pentagon     –  v  = d 
Hexagon     –  3/2v  = d 
Heptagon    –  2v  = d 

 
Figure 3. Chandelle’s solution 
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George did not go any further with the ratio relation 
between “vertices” and “diagonals”. He could not arrive 
at a generalized formula with the ratio pattern, so he 
introduced a recursive relation dn = dn-1 + n - 2. This 
relation is identical to that noted by Balacheff as f(n -1) 
+ n - 2. It is interesting that George used “v” and “d” all 
the while, and then suddenly switched to “d” and “n”. 
The way in which he spotted the pattern and the 
formula that he later developed from the pattern both 
represent sophisticated thinking. George put into play a 

number of different ideas in arriving at the general 
formula. At that point, it appears that he left that 
particular formula and, on the left side of the page, 
derived a formula for dn+1.  His derivation of dn+1 = [(n 
+ 1)2- 3(n + 1)] / 2 is, in fact, correct and does yield the 
correct number of diagonals, for we substitute (n -1) for 
“n”. It quite interesting that George made great efforts 
to derive dn+1, but then did not simplify this 
complicated expression. If simplified, the expression 
yields (n + 1)(n - 2)/ 2.  

 
Figure 4. George’s solution 
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On the right side of the recursive formula,  
n/2 (n-3) = n2-3n/2  

which is the correct formula for calculating the number 
of diagonals is also seen. He seems to have developed 
this as another expression for the number of diagonals. 
One can conjecture that 2(n-3) comes from what he 
initially observed (as noted in the upper right side)—
that is, (as (4-3)+(4-3), (5-3) (5-3) and so on). The ratios 
0, 0.5, 1, and 1.5 are transformed into and expressed as 
(n-4)/2 and the increment in the number of diagonals 
that occurs each time is (n-3). Thus, his formula is  
2(n-3)+(n-4)/2*(n-3), which will yield  
n/2(n-3)=n2-3n/2 when simplified. This is high level 
thought, indeed. George generates a mathematical proof 
based on induction and uses examples to demonstrate 
how the number of diagonals increases as the number 
of sides increase. His expressions demonstrate high-
level mathematical thinking. Hence, this can be 
categorized as fully correct mathematical proof. 
George ended his proof with a hollow black square. 
This is a simple way of stating that the proof is 
complete. This symbol (or sometimes a dark black 
square (also called a tombstone) is usually used to end a 
proof when it is has been formally completed . In other 
words, this hollow black square is used instead of 
writing Q.E.D. which is an abbreviation of the Latin 
phrase “quod erat demonstrandum" (literally, "which was to 
be demonstrated"). Interestingly, only George and one 
other student ended their proofs in this formal way. 

SUMMARY 

Balacheff’s (1988) study is one of the most often 
quoted in scholarly and professional publications 
dealing with mathematical proof.  His work has 
influenced many researchers and his findings have long 
been a source of interest and debate.  For all of these 
reasons, the researcher wished to conduct a study that 
would resonate with Balacheff’s work.  Hence, the 
researcher adopted his research design, carefully 
considered his findings, and devised a similar plan, 
though set it within a different context. As seemed to be 
the case with Balacheff, the researcher placed a great 
deal of importance on the concept of mathematical 
proof. Also like Balacheff, the goal of this study was to 
see how the participants engaged in the proving process.  
Balacheff gave his students ample time to complete the 
work and would only accept it when both students 
agreed that they had completed the task; the researcher 
also provided sufficient time for the completion of all 
tasks and permitted participants extra time if they 
needed it.  

Based on the efforts of his teenage participants, 
Balacheff (1988) outlined a proof hierarchy reflecting 
four increasingly more sophisticated levels of thought 
and skill pertaining to mathematical proof. Moreover, he 

managed to place all of his students into one of these 
four levels with (apparently) relative ease. In this study, 
the researcher attempted to place each student 
participants into one of these four categories by 
BoTMP.  The researcher worked with students who had 
completed a minimum of 12 university-level 
mathematics courses: their understandings of and 
experience with proof, likely, far exceeded that of 
Balacheff’s thirteen- and fourteen- year-old participants. 
Since the student teachers in this study were already 
familiar with the expected forms for mathematical 
proof, they tended to try and make their work look 
‘mathematical.’ It was noted that almost all of the proof 
work that these student teachers placed on the page 
reflected traces of thought experiment, the highest level 
in Balacheff’s hierarchy of proof. But traces did not 
necessarily mean that the students had successfully and 
entirely reasoned through the problem at this, the most 
sophisticated level, within Balacheff’s taxonomy. There 
was also evidence of lower levels of thought.  Indeed, 
the data indicates that most of these young adults did 
not operate predominately nor successfully at the 
highest level in Balacheff’s taxonomy of proofs. Hence, 
it was difficult to categorize their work and place their 
proofs into the neat categories afforded by Balacheff’s 
well-defined taxonomy.  

Balacheff’s four levels of proof—naïve empiricism, 
the crucial experiment, the generic example, and the 
thought experiment—are developmental. Implicit in this 
hierarchy is the notion that students move from one 
level to the next, progressing to more mature and more 
sophisticated levels of thinking while embodying what 
has come before. The role of the teacher is to lead the 
students, by means of classroom discourse, towards 
higher and higher levels.  This demands teachers to have 
excellent subject content knowledge and pedagogical 
knowledge. 

It is also clear from my study that many students had 
considerable difficulty successfully completing proof 
tasks designed for the secondary school student.  This 
finding corresponds with the findings of almost all of 
the studies that I examined (irrespective of the level of 
the participants) dealing with mathematical proof  
(Knuth, 1999, Coe & Ruthven, 1994, Healy & Hoyles, 
Martin & Harel, Chazan, 1993) 

One particularly intriguing finding of this study is 
that even though one could neatly and clearly define 
Balacheff (1988)’s categories verbally, when it came to 
generating exemplars for these categories on paper, it is 
not that easy. Neither was it straightforward placing a 
particular proof format into one of these categories, at 
least the proofs completed by the participants in this 
study, students with significant mathematical proof 
experience.  

 Further research needs to be done on students’ 
cognitive skills and reasoning processes as they work 
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through mathematical proving tasks.  When researchers 
in mathematics, as well as mathematics professors and 
professors of mathematics education, understand more 
clearly how students think through as they solve proofs, 
they will be better able to ensure that future elementary 
and secondary school mathematics teachers possess, not 
only the pedagogical knowledge of how to teach their 
subject, but the mathematical knowledge and 
mathematical self-knowledge that will enable them to do so 
with confidence and enthusiasm.  The success of 
current reforms in mathematics education may depend 
upon it.  
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