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There are diverse ways to construct instructional activities that teachers can use to foster 
their students’ development of mathematical thinking. It is argued that the use of 
computational tools offers teachers the possibility of designing and exploring 
mathematical tasks from distinct perspectives that might lead their students to the 
reconstruction of mathematical relations. In particular, a task that involves the 
construction of a simple dynamic configuration is used to introduce an inquisitive 
approach to identify mathematical conjectures or relations and ways to explore and 
support them. In this process, a hypothetical instructional route is sketched where visual, 
numeric, geometric, and algebraic approaches are utilized to validate those conjectures.   
 
Keywords: Problem Solving, Computational Tools, Teachers’ Knowledge, Instructional 
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INTRODUCTION 

The significant development and availability of 
several digital tools have opened up diverse 
opportunities for teachers and students to approach and 
construct mathematical knowledge and to develop 
problem-solving strategies. How does the use of 
particular digital technologies help teachers promote 
their students’ development of problem solving 
activities? What types of opportunities can the use of 
the tools offer the learners to engage in mathematical 
thinking?  To what extent does the use of digital 
technologies become relevant for teachers to trace and 
explore potential instructional routes to guide their 
students learning experiences?  I utilize the construct 
“instructional trajectories” to explore and discuss ways 
in which the systematic use of computational 
technologies can help teachers trace and examine 
potential instructional routes to frame and guide their  

 

instructional practices.  It is argued that the use of the 
tools becomes important for teachers and students to be 
engaged in an inquiring or inquisitive approach to 
reconstruct or develop mathematical relations and 
enhance problem solving approaches. The hypothetical 
instructional trajectories that result from examining 
mathematical task with the use of computational tools 
are used to guide and promote the students’ actual 
development of their own learning trajectories. In this 
context, an overarching principle that distinguishes the 
use of the tools is to conceptualize the tasks in terms of 
dilemmas or questions that need to be represented and 
explored through the use of mathematical resources and 
problem solving strategies. In this context, an inquisitive 
approach to work on the tasks becomes relevant to 
illustrate that the use of the computational tools can 
help teachers develop and employ a set of heuristics 
(Polya, 1945) that includes a dynamic representation of 
the task, finding loci, exploring partial goals, using the 
Cartesian system, quantifying relations, etc. In addition, 
it is shown that the construction of instructional 
trajectories can be a teachers’ means to review their own 
mathematical knowledge and problem solving 
approaches and to openly discuss the paths or routes to 
approach and solve the tasks in their actual practice.  
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Instructional Trajectories and Teachers’ 
Mathematical Knowledge 

What mathematical, technological, and pedagogical 
knowledge should the education of high school 
mathematics teachers include? Who should participate 
in the designs of educational programs to prepare and 
upgrade mathematics teachers? What should be the role 
of mathematics departments or the faculty of education 
in preparing prospective and practicing teachers? In 
what types of educational programs should practicing 
teachers participate in order to revise and extend their 
mathematical knowledge and to incorporate research 
results from mathematics education into their practices? 
Traditional ways to prepare high school teachers 
normally involve the participation of both mathematics 
departments and the faculty of education. Mathematics 
departments offer courses in mathematics while the 
faculty of education provides the didactical or 
pedagogical courses. This model of preparing teachers 
has not clearly provided them solid basis to exhibit the 
needed mathematical sophistication to interpret and 
efficiently guide their students in the construction or 
development of mathematical knowledge. As a 
consequence, teachers fail to organize and implement 
meaningful learning activities that foster their students’ 
development of mathematical thinking. Indeed, it is 
common to read that university instructors complain 
that their first year university students lack not only 
fundamental mathematical knowledge; but also 
strategies or resources to solve problems that require 
more than the use of rules or formulae (Artigue, 1999, 
Selden & Selden, 2001).  

Many practicing teachers, for different reasons, have 
not learned some of the content they are now required 
to teach, or they have not learned it in ways that enable 
them to teach what is now required. …Teachers need 
support if the goal of mathematical proficiency for all is 
to be reached. The demands this makes on teacher 
educators and the enterprise of teacher education are 
substantial, and often under-appreciated (Adler, et al., 
2005, p. 361). 

Davis and Simmt (2006) suggest that teachers’ 
preparation programs should focus more on teachers’ 
construction of mathematical ideas or relations to 
appreciate their connections, interpretations, and the use 
of various types of arguments to validate and support 
those relations, rather than the study of formal 
mathematics courses. Thus, the context to build up the 
teachers’ mathematical knowledge should be related to 
the needs associated with their instructional practices. 
“…[mathematical knowledge] needed for teaching is not 
a watered version of formal mathematics, but a serious 
and demanding area of mathematical work” (Davis & 
Simmt, 2006, p. 295). In this perspective, we argue that 
teachers’ mathematical knowledge can be revised and 

enhanced within an interacting intellectual community 
that fosters an inquisitive approach to develop 
mathematical ideas and to promote problem-solving 
activities. The core of this community should include 
the participation of mathematicians, mathematics 
educators, and practicing teachers. This community 
should promote collaborative work to construct 
potential instructional trajectories to guide or orient the 
teachers’ instructional practices. Teachers need to be 
interacting within a community that supports and 
provides them with collegial input and the opportunity 
to share and discuss their ideas in order to enrich their 
mathematical knowledge and problem solving strategies. 
Regarding the use of computational tools, Bransford, 
Brown, and Cocking (Eds.) (1999) state that:  

New tools of technology have the potential of 
enhancing learning in many ways. The tools of 
technology are creating new learning environments, 
which need to be assessed carefully, including how their 
use can facilitate learning, the types of assistance that 
teachers need in order to incorporate the tools into their 
classroom practices, the changes in classroom 
organization that are necessary for using technologies, 
and the cognitive, social, and learning consequences of 
using these new tools (p. 235). 

In this context, we illustrate the importance of using 
computational tools to represent and explore various 
ways of approaching mathematical tasks. The task 
discussion leads us to show that the use of diverse 
computational tools offers teachers the possibility of 
working on mathematical tasks from perspectives that 
involve visual, numeric, geometric and formal 
approaches. And as a consequence, they can appreciate 
or value the advantages associated with the use of the 
tools and trace potential instructional routes that can 
guide and foster their students’ development of 
mathematical thinking and problem solving approaches. 

Hypothetical Instructional Trajectories and 
Computational Tools 

Problem solving activities that promote the use of 
digital tools represent an opportunity for practicing and 
prospective teachers to revise and extend their 
mathematical competences. What task representations 
are favored with the use of computational tools? To 
what extent does the use of computational tools become 
relevant in identifying and exploring conjectures or 
mathematical relations? To what extent does the use of 
particular tools shape a students’ way of thinking about 
tasks and problems? These questions help explore ways 
of reasoning that can emerge or be developed in 
problem solving approaches that promote the use of 
computational tools.  

It is argued that the development and availability of 
computational tools offers teachers and students the 
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possibility of enhancing their repertoire of heuristic 
strategies to solve mathematical problems and to 
formulate or reconstruct some mathematical relations. 
“…guided reinvention [of mathematical knowledge] 
offers a way out of the generally perceived dilemma of 
how to bridge the gap between informal knowledge and 
formal mathematics” (Gravemeijer & Doorman, 1999). 
It is also important to recognize that different tools may 
offer distinct opportunities for students to represent and 
approach mathematical problems. Thus, it becomes 
relevant to show and discuss not only the potential 
associated with the use of diverse tools but also ways in 
which the distinct approaches to the tasks or problems 
can be related or complemented. For example, with the 
use of dynamic software, such as Cabri-Geometry or 
Sketchpad, some tasks can be represented dynamically 
as a means to identify and explore diverse mathematical 
relations or conjectures. Later, with the use of a hand-
held graphing calculator those conjectures can also be 
analyzed graphically and algebraically. In this 
perspective, an underlying principle in any problem 
solving approach to learn mathematics is to look for 
distinct ways to represent and explore mathematical 
tasks and to contrast or discuss mathematical 
approaches that emerge from the use of diverse tools 
including the use of paper and pencil (Santos-Trigo, 
2007). Thus, the problems or tasks are seen as 
opportunities to pose and pursue relevant questions that 
can lead to identify and explore mathematical relations  
(Schoenfeld, 1998). We identify and document the types 
of heuristic strategies that appear in problem solving 
approaches that promote the use of computational 
tools. In particular, the analysis and discussion of the 
strategies which emerge as result of constructing and 
exploring dynamic representations of problems.  

Tasks are the key ingredients in promoting and 
tracing the students’ development of problem solving 
strategies. Here, teachers first need to identify potential 
or theoretical instructional trajectories (Simon & Tzur, 
2004) to frame and then discuss the distinct routes that 
their students can follow to approach the tasks. 

…[A]n overarching research goal in the field of 
learning trajectories is to generate knowledge of 
learning and teaching. Therefore, scientific processes 
(e.g., documenting decisions, rationales, and 
conditions; hypothesizing mechanisms; predicting 
events; and checking those predictions) must be 
carefully followed and recorded (Clements & Sarama, 
2004, p.85).  

The identification of potential instructional 
trajectories involves working on the tasks in detail and 
exploring various ways to represent and examine the 
tasks using computational tools. Working on these tasks 
requires that teachers recognize ways in which 
mathematics knowledge is connected, and a discussion 
of what constitutes a valid argument to support 

mathematical relations. Zbiek, Heid, & Blume, (2007, p. 
1170) suggest that in experimental mathematics, 
computational tools can be used for: 

(a) gaining insight and intuition, (b) discovering new 
patterns and relationships, (c) graphing to expose 
mathematical principles, (d) testing and especially 
falsifying conjectures, (e) exploring a possible result to 
see whether it merits formal proof, (f) suggesting 
approaches for formal proof, (g) replacing lengthy 
hand derivations with tool computations, and (h) 
confirming analytically derived results. 

In this context, we illustrate the ways in which the 
use of Cabri-Geometry software and hand-held 
graphing calculators can help teachers represent and 
apply a set of heuristics to approach and solve the tasks. 
The solution process is presented around problem 
solving episodes where relevant questions guide the task 
solution process. The episodes are part of an inquiry 
framework that identifies instructional trajectories that 
teachers can use to structure and to guide the 
development of their lessons (Santos-Trigo & 
Camacho-Machín, in press). The task is representative 
of a set of problems that were used in a problem-solving 
seminar in which high school teachers used Cabri-
Geometry software to identify and discuss potential 
learning trajectories.  

The task involves the construction of a dynamic 
configuration that leads to relate a tangent circle to the 
study of two conic sections: The parabola and the 
hyperbola. Here, the use of two tools, the dynamic 
software and a hand-held calculator, becomes relevant 
to complement and relate ways of reasoning that 
involve visual, numeric, geometric, and algebraic 
approaches. The task is a variant of what Gravemeijer & 
Doorman (1999) call context problems since the 
problem solver has the opportunity to reconstruct a set 
of mathematical relations as a result of representing and 
examining mathematical objects dynamically.  

An example: On the Construction of Possible 
Instructional Routes 

An overall principle associated with the construction 
of potential instructional trajectories is that all problem 
representations should be constantly examined and 
interpreted in terms of responding questions that 
involve the use of mathematical resources or problem 
solving strategies. Thus, the formulation of questions 
and the search for diverse ways to respond to those 
questions are crucial activities that shape the 
development of potential routes of instruction. The next 
example illustrates ways in which the use of a tool 
(Cabri-Geometry software) can offer teachers the 
opportunity of reconstructing a set of mathematical 
relations that involves contents associated with the 
study of the conic sections. The problem solving 
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episodes emerge within a community in which high 
school teachers together with mathematicians and 
mathematics educators worked on series of tasks to 
identify potential instructional routes and to discuss the 
strengths and limitations of using several computational 
tools. Thus, the goal is to characterize the community or 
group’s problem solving approaches that emerged 
during the development of the sessions rather than 
analyzing in detail the individual contribution or 
performances of the participants.    

The initial task. Given a line L and a point P not 
on the line (Figure 1) construct a dynamic 
configuration1 that involves other mathematical objects 
and identify properties or mathematical relations that 
result from moving particular elements within the 
configuration. 

This is an open activity where the construction of a 
geometric configuration might involve various initial 
routes. Thus, some departure attempts may include, for 
example: (i) Placing a point Q on line L and 
constructing an equilateral triangle with side PQ (Figure 
2a) and add other objects and start moving some of 
them to identify invariants or changes produced as a 
result of that motion on other objects within 
configuration; or (ii) Situating also point Q on line L 
and drawing a circle that passes through point P and is 
tangent to line L at point Q (Figure 2b). In the latter, 
the initial goal can be to identify mathematical relations 
around the construction of a circle tangent to line L that 
passes through point P (Figure 2b). Thus, to draw a 
tangent circle to line L that passes through point P is the 
point of departure to identify and explore mathematical 
relations. 

First episode: Dynamic representation and 
partial goals. An important strategy that is used often 
in problems or tasks that can be represented 
dynamically is to identify and analyze loci that result 
when some components (points, segments, lines, etc.) of 
the problem representation are moved along well 
defined paths.  Thus, the construction of a dynamic 
representation of problems, whenever possible, is a 
heuristic that need to be considered in problem solving 
approaches. The use of the software for the 
construction of a dynamic representation is based on 
conceptualizing the problem in terms of relevant 
mathematical properties.  What does it mean to draw a 
circle that passes through a point and is tangent to a 
given line? In this task, a heuristic, that involves 
focusing on a partial goal of drawing a circle with center 
point C situated on a perpendicular to line L and radius 

                                                 
1 A dynamic configuration consists of simple mathematical 
objects (points, segments, lines, triangles, squares, circles, 
etc.) arranged in such a way that one can move a particular 
element within the configuration and observe what happens 
to others elements as a result of that movement. 

L

P

Figure 1. Construct a dynamic configuration 
that includes a given line L and a point P out 
of the line 

L

P

Q

 
Figure 2a. Drawing an equilateral triangle 
with side PQ 

 

L

P

Q

 
Figure 2b. Drawing a circle that passes 
through point P and is tangent to line L 

 

L

L1 P

Q

C

Q'

 
Figure 3. The center of the circle must lie on 
the perpendicular line to L
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segment CP (Figure 3), is pursued to identify ways to 
construct a tangent circle.  

A visual approach. The circle (Figure 3) satisfies the 
condition that passes through point P but it is clear that 
it is not tangent to line L. However, when either point C 
or point Q are moved along lines L1 or L respectively, 
there will be visually a position for the circle in which it 
is tangent to line L (Figure 4a and 4b). This visual 
solution is useful to make explicit a set of properties 
associated with the construction of the tangent circle. 

Second episode: Identification of geometric 
properties, a bisector approach. What geometric 
properties does the tangent circle satisfy? Is there any 
particular relation between the center of the tangent 
circle and the tangency point and point P? The visual 
approach becomes important to identify relevant 
properties embedded in the representation. It is 
observed that when the circle is tangent to line L 
(Figures 4a and 4b), then d(C,Q) must be equal to 
d(C,P). Based on this fact, the center of the tangent 
circle must be the intersection of the perpendicular 
bisector of segment QP and L1 (perpendicular line to L 
that passes through Q) (Figure 5). 

The above solution involves an Euclidean 
construction since it can be drawn with straightedge and 
a compass. With the use of the software it is possible to 
identify and examine the path left by particular points 
when other points are moved within the representation. 
What is the locus of point C’ (center of the tangent 
circle) when point Q is moved along line L? (Figure 6). 
The locus of point C’ when point Q is moved along line 
L seems to be a parabola; however, it is important to 
prove that the locus satisfies the definition of this conic 
section.  

Third Episode: The use of empirical and formal 
arguments. To verify empirically that the locus is a 
parabola, we choose a point R on the locus and assume 
that point P is the focus and L is the directrix of the 
parabola. We calculate the distance from R to P and 
from R to line L and notice that for distinct positions of 
point R both distances are equal. Figure 7 shows two 
positions of point R. In this example, another heuristic 
method appears: To measure attributes (lengths, 
distances, areas, perimeters, angles, slopes, etc) 
associated with particular objects in order to identify 
invariants. In this case, the use of the software helped us 
to measure and compare distances from a point on the 
locus to line L and from the point to the center of the 
tangent circle. 

L

L1 P

Q

C

 
Figure 4a. Moving point C along line L1 to 
visually identify the tangent circle to line L 

L

L 1 P

Q

C

 
Figure 4b. Moving point Q along line L to 
visually identify the circle tangent to line L 

 

L

L1

P

Q

C

C'

 
Figure 5. The center of the tangent circle is the 
intersection of the perpendicular bisector of PQ 
and the perpendicular line to L that passes 
through point Q 

L

L1

P

Q

C

C'

 
Figure 6. The locus of point C’ when point Q is 
moved along line L is a parabola. 
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A geometric argument to show that the locus is a 
parabola is based on observing that point C’, which 
generates the locus, is on the perpendicular bisector of 

segment QP (Figure 8). Therefore, the distance from 
point C’ to point P is equal to the distance from point 
C’ to line L (the definition of perpendicular bisector). 
Therefore, the locus of point C’ when point Q is moved 
along line L is a parabola.  

Fourth episode: Connections. On figure 3 it is 
observed that the circle intersects the perpendicular line 
to L at Q’ and when point Q is moved along line L, 
then point Q’ describes a unique path. What is the locus 
of point Q’ when point Q is moved along line L?  Again 
the software helps us identify this locus (Figure 9).  

When point Q moves along line L there are two 
positions, the intersection points of the locus and line L, 
in which the circle is tangent to line L. Thus, the center 
of each tangent circle will be the intersection points (C’ 
and C’’) of the perpendicular lines to line L drawn from 
the intersection points of the locus and line L and the 
perpendicular line to L1 that passes by point C 
respectively (Figure 10). 

  With the use of the conic command from the 
software, we select five points on the locus and draw the 
corresponding conic section (Figure 10). In this case the 
conic section is a hyperbola.  To show that the locus 
satisfies the definition of hyperbola, we draw a 
perpendicular line to L that passes through point P. This 
line intersects the locus at point P’ and point M is the 
midpoint of segment PP’. We draw the perpendicular 
line to line PP’ that passes through point M and a circle 
with center at point M and radius MP. This circle 
intersects that perpendicular at point K. We draw a 
perpendicular to line MK that passes through point K 
and a perpendicular to line PP’ that passes through 
point P, these lines get intersected at point K’. We draw 
a circle with center point M and radius MK’. This circle 
intersects line PP’ at points F1and F2. F1 and F2 are the 
foci of the hyperbola (Figure 11). This geometric 
construction can be validated through an algebraic 
approach (Santos-Trigo, et, al., 2006).  

Again to show empirically that the definition of 
hyperbola is satisfied, we take a point S on the locus and 
calculate the absolute value of the difference between 
the distances from that point to each focus. It is 
observed that for different positions of point S the 
difference is a constant (Figure 12). 

It is also observed from figure 10 that the loci of 
points C’ and C’’ (centers of the tangent circles), when 
point C is moved along line L1, is a parabola (Figure 13). 

The argument used to show that the locus is a 
parabola is based on the fact that points P and R are on 
the circle with centre C’, therefore, d(C’,P) = d(C’,R). 
That is, the focus of the parabola is point P and its 
directrix is line L.  
A triangle approach.  Another way to draw the tangent 
circle to line L that passes through point P involves 
drawing Q on line L, a circle with center point Q and 
radius QP, and a parallel line L’ to line L that passes  

L

L1

3.36 cm

3.36 cm

P

Q

C

C'

R

 

L

L1

5.40 cm

5.40 cm

P

Q

C

C'

R

 
Figure 7: Verifying the definition of parabola 

 

L

L 1

P

Q

C'

 
Figure 8: Using the definition of perpendicular 
bisector to show that the locus satisfies the 
definition of the parabola 

 

 

L

L1
P

Q

C

Q'

 
Figure 9. the locus of point Q’ when point Q is 
moved along line L. 
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L

L 1

L 2

L 3P

Q

C

Q'

R R'

C' C''

 
Figure 10. Drawing the tangent circles to line L 

 

L

P

R R'

C' C''

P'

MK

K'

F 1

F 2

 
Figure 11. The locus satisfies the definition of hyperbola 

 

L

d(F 2 ,R)= 7.77 cm

d(F 1 ,R)= 3.43 cm

|d(F 1 ,R)-d(F 2 ,R)|  =  4.34 cm

P

R R'

C' C''

P'

MK

K'

F 1

F 2

S

L

d(F 2 ,R)= 8.02 cm

d(F 1 ,R)= 3.67 cm

|d(F 1 ,R)-d(F 2 ,R)|  =  4.34 cm

P

R R'

C' C''

P'

MK

K'

F 1

F 2

S

 
Figure 12. For distinct positions of point S on the locus the definition of hyperbola is satisfied 

 

L

L 1

P

Q

C

Q'

R R'

C' C''

 
Figure 13. The path left by points C’ and C’’ when point C is moved along line L1 is a parabola 
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through point P (Figure 14). Thus, the tangent circle to 
line L that passes though point P is the circle that 
inscribes triangle PQR. The center of the tangent circle 
is then the intersection of the perpendicular bisectors of 
the sides of triangle PQR (Figure 14a). 

 It is observed that when point Q is moved along 
line L, a family of triangles and circles tangents to L 
appeared. At what position of Q does triangle PQR 
become equilateral? To respond to this question, we 
identify the intersection of the heights of sides PQ and 
QR (orthocenter) and observe that the loci of point C 
and O when point Q is moved along line L are two 
parabolas (Figure 15). Thus, at the intersection point of 
those parabolas is the position where points C and O 
(the circumcenter and orthocenter) coincided. There the 
triangle PQR is equilateral (Figure, 15a). 

A pattern approach. Yet, another approach to draw 
tangent circles to line L that pass through point P 
involves a construction pattern. The pattern is based on 
constructing initially a perpendicular line to L that 
passes through point P. This perpendicular line 
intersects line L at point Q. Thus, the midpoint of 
segment PQ is the center of the tangent circle to line L 
that passes through point P (Figure 16). 

The grid on Figure 16a was constructed by drawing a 
perpendicular line to line PQ that passes through point 
C. This perpendicular intersects the circle with center C 
at point R. From point R a perpendicular to line L is 
drawn. By using the command Reflection, all the other 
lines are constructed. It is also observed that if line L 
and line PQ are the axis of a coordinates system, then 
the centers of the tangent circles to line L are given as 
C(0, 1); D(2, 2); E(4, 5), etc. This sequence leads us to 
observe that sequence of the first entries (0, 2, 4, 6, etc.) 
has constant difference of 2; while the second difference 
of the second entries (1, 2, 5, 10, 17, 26, etc.) was also of 
2. Here, if segment QC is taken as one unit, then the 
equation of the curve that passes through the centers of  

the tangent circle to L is 
y =

x 2

4
+ 1

 which 
represents a parabola equation.  

It is observed that a simple task that involves 
drawing a tangent circle brings into the discussion not 
only the use of diverse mathematical concepts but also 
the application of distinct mathematical processes and 
problem solving strategies to formulate and pursue 
relevant questions. 

An algebraic approach. The initial task can also be 
represented algebraically. A heuristic here will be to set 
the Cartesian system in such a way that the algebraic 
calculations can be made easy. Thus, we choose the x-
axis as the line L and the y-axis to be the perpendicular 
line to L on which the centre of the tangent circle is 
located. On Figure 17 line L is the x-axis and the 

perpendicular line to x-axis that passes through point Q 
is the y-axis, point P has coordinates (x1, y1) and M is  

L

L'

Q

P

R

 
Figure 14. Drawing a circle with centre at Q and 
radius QP 
 

L

L'

Q

P

R

 
Figure 14a. The intersection point of the 
perpendicular bisectors of segment PQ and QR 
is the center of the circle tangent to L 

 

L

L'

Q

P

RC

O

 
Figure 15. When triangle PQR does become 
equilateral? 
 

L

L'

Q

P
R

C
O

 
Figure 15a. Triangle PQR is equilateral when 
the circumcenter and orthocentre get 
intersected 
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the midpoint of segment QP and has coordinates 
x1

2
,
y1

2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
.   

Based on this information, the slope of line QP is 

m =
y1

x1  and the slope of the perpendicular bisector of 

segment PQ is
m1 = −

x1

y1 . Therefore, the equation of 
the perpendicular bisector of PQ can be expressed as: 

y −
y1

2
= −

x1

y1

(x −
x1

2
)
, and we take x = 0 

then
y =

x1
2

2y1

+
y1

2 . Thus, the centre of the tangent 

circle will be 
0,

x1
2

2y1

+
y1

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
. A simpler approach can 

also be applied by recognizing that the point P needs to 
satisfy that d(Q, C) = d(C, P). That is, if C(y, 0) and P 

(x1 y1) then we have that  y = x1
2 + (y1 − y)2

 which 

implies that 
y =

x1
2

2y1

+
y1

2  
Commentary: The dynamic representation of 

mathematical objects or problems is a heuristic that can 
guide the problem solver in the search of mathematical 
relations. The partial goal of drawing a circle with its 
center on a perpendicular to line L and radius the 
distance from the center to the given point (P) becomes 
relevant to visualize and examine properties of the 
solution. Based on those properties the tangent circle 
was constructed. In addition, the dynamic configuration 
is used to relate the problem to other mathematical 
objects (parabola and hyperbola). The problem solver 
must show and justify that the objects that are visualized 
through the loci satisfy the corresponding definitions. 
To accomplish this task, an important heuristic that 
gives an empirical verification is to measure distances 
between objects in order to observe invariants when 
particular objects are moved along specific paths. In this 
case, the process of measuring and comparing distances 
was a relevant strategy to verify empirically the 
definition of both conic sections. In addition, the 
dynamic representation of the tasks becomes a 
departure point to identify and examine a set of 
relations that emerge as a result of moving mathematical 
objects within the same configuration. The use of the 
software not only can help teachers and students 
identify important mathematical relations; but also to 
provide a route to support or prove them. In this task, 
the route involves ways to first visualize a relation, later 
to verify it empirically and finally to use geometric and 
algebraic arguments to prove it. 

Schoenfeld (1985; 1992) reports that in general 
students tend to copy or redraw figures that appear in 
the statement of the problems and use them to make 
conjectures or to identify relations.  With the use of 
paper and pencil the sketches or representations drawn 
not necessarily capture the objects’ precision and 
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Figure 16. Drawing a tangent circle to line L that 
passes through point P 
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Figure 16a. Drawing other tangent circles based 
on a symmetry pattern of the initial construction 
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Figure 17. Approaching the task algebraically 
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students often assume or perceive false conjectures or 
statements.  However, the use of the software allows us 
to accurately represent and draw mathematical objects. 
Also these representations can facilitate the process of 
looking for mathematical relations and the visual 
exploration of their plausibility. In addition, with the use 
of the software it is easy to change size or positions of 
the original objects to explore whether invariants or 
conjectures are maintained for a family of those objects. 
For example, in the task, the position of point P can 
change and the way to construct and generate the conic 
sections is preserved.  As a consequence, with the use of 
computational tools, the problem solver or students 
might develop a method of thinking of how to 
represent and approach a family of isomorphic 
problems. 

CONCLUDING REMARKS 

I use the construct “hypothetical instructional 
trajectory” to identify and examine potential routes that 
teachers can initially trace with the use of computational 
technology. How can an instructional route be 
constructed? Who can participate in such construction? 
And what is the role of the use of computational tools 
in constructing them? The initial task is used as a 
departure point to construct a dynamic configuration 
that leads us to constantly formulate and explore 
questions from diverse angles or perspectives. In this 
process, there is an attempt to identify crucial themes 
and ideas that teachers and researchers could relate and 
consider in their practice and research agendas: 

Inquiry Process.  There is ample evidence that the 
use of the tool offers the problem solver the 
opportunity of becoming engaged into an inquiry 
process that guides him/her to look for mathematical 
relations and means to support them (Santos-Trigo, et, 
al., 2007). Thus, learning mathematics and problem 
solving are processes in which students constantly pose 
or formulate questions to identify, examine, and support 
conjectures or mathematical relations. In the task 
discussed, there is no initial given question or problem 
to solve, instead the problem solver begins by 
assembling or putting together a geometric 
configuration which becomes the source to be engaged 
into an inquiry process in order to develop or 
reconstruct a set of mathematical relations. The use of 
the tools provides, in general, instantaneous response to 
the problem solver’ s queries and as a consequence it 
can foster the discussion of results within the learning 
community. Thus, such community should not only 
value or pay attention to the emerging relations or 
results; but also to the search for arguments to support 
them.      

Heuristic Strategies. An important heuristic 
associated with the use of the tools is to think of the 

tasks or problems in terms of mathematical properties. 
If the problem solver is to represent the problem 
dynamically it is necessary to identify relevant 
mathematical properties to guide the construction of 
that representation. What does it mean to draw a circle 
that is tangent to a given line? Is there a relation 
between the tangency point and the center of that 
circle? These are examples of questions that helped 
problem solvers to represent the task with the use of the 
tools. In addition, other heuristics such as identifying 
and exploring partial goals, assuming the task solved, or 
finding loci of particular objects are easy to implement 
with the use of the tools and are useful to explore and 
generate mathematical relations. 

The Use of Various Computational Tools. The 
efficient use of a tool to represent and explore 
mathematical problems is a process in which the 
problem solver identifies and recognizes the power and 
advantages to think of a given problem in terms of the 
software commands. The use of the tool also shapes the 
way students or problem solvers think of the problem 
(Kaput, Lesh, Hegedus, 2007). Since each tool offers 
particular advantages to deal with each problem, then it 
is relevant to utilize more than one tool to enhance the 
teachers or students’ ways to approach and solve 
problems (Santos-Trigo, et, al., 2006). For example, the 
use of dynamic software facilitates the construction of 
dynamic representations of objects while the use of 
hand-calculator offers certain advantages to represent 
and deal with the problem algebraically. Thus, it is 
important for the problem solver to utilize various 
computational tools to search for and complement 
different approaches to the problem. 

Curriculum Fundamentals. The task presented in 
this paper was discussed during two problem-solving 
sessions of three hours each. Some of the approaches 
emerged during the development of the session; but 
other ideas and task extensions emerged out of the 
sessions’ work where the participants continued 
commenting, exchanging, and testing other task ideas. 
Here, the participants pointed out that to promote their 
students work along the lines that appeared while 
approaching the task, it is necessary to reduce the 
curriculum contents that teachers are asked to cover in 
their regular courses. In this perspective, the participants 
suggested that the contents to be studied need to be 
structured and organized around fundamental 
mathematical ideas and problem solving processes that 
are relevant for students to construct and develop in 
depth (NCTM, 2000). It is also recognized that the use 
of the tools can help students to foster strategies and 
ways to formulate and pursue questions and eventually 
identify a set of mathematical relations.    

Teachers’ Use of the Tools and Mathematical 
Knowledge. How should in-service teachers 
incorporate the use of computational tools in their 
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instructional practices? There is evidence that the 
construction of potential instructional trajectories is a 
problem solving activity in which the teachers have the 
opportunity of recognizing the potentials and limitations 
associated with the use of the tools to represent and 
explore mathematical relations (Santos-Trigo, 2006). In 
addition, the use of the tools seems to promote the 
discussion of mathematical contents in terms of 
identifying potential routes for students to comprehend 
and apply the acquired knowledge. For example, in the 
initial task, the appearance of the conic sections while 
drawing a tangent circle not only promoted the 
discussion of the properties of those figures; but also 
the consideration of instructional paths in which the 
study of the conic sections could be structured or 
organized for students. Thus, a clear hypothetical route 
that emerges while approaching the task might focus on 
guiding the students to initially construct a dynamic 
representation of the problem to comprehend and make 
sense of relevant information associated with the 
problem situation. Later, the configuration becomes a 
source or instance to identify visually a set of relations 
or conjectures whose plausibility and validity can be 
validated empirically (quantification of those relations). 
Further, the use of tools not only facilitates the 
visualization and exploration of mathematical relations, 
but also provides important information to represent 
and analyze the relations in terms of geometric 
properties or algebraically. 

The use of computational tools offers teachers the 
possibility of guiding their students to develop an 
inquiry approach to interact with mathematical ideas or 
problems. In this process, problem solving and 
constructing mathematical ideas require more than 
responding particular questions, they demand that the 
students become engaged into a reflection activity to 
search for multiples ways to solve problems or to 
explain mathematical ideas, and to look for possible 
connections and means to communicate results. 
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